

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic [3a]
- Term rewriting [4]
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- (mid-semester break)
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales

[^0]
Overview

Automatic Proof and Disproof

\rightarrow Sledgehammer: automatic proofs

Overview

Automatic Proof and Disproof

\rightarrow Sledgehammer: automatic proofs
\rightarrow Quickcheck: counter example by testing

Overview

Automatic Proof and Disproof

\rightarrow Sledgehammer: automatic proofs
\rightarrow Quickcheck: counter example by testing
\rightarrow Nipick: counter example by SAT

Overview

Automatic Proof and Disproof

\rightarrow Sledgehammer: automatic proofs
\rightarrow Quickcheck: counter example by testing
\rightarrow Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.
\rightarrow First-order logic (ATP): Otter, Vampire, E, SPASS

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.
\rightarrow First-order logic (ATP): Otter, Vampire, E, SPASS
\rightarrow Propositional logic (SAT): MiniSAT, Chaff, RSat

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.
\rightarrow First-order logic (ATP): Otter, Vampire, E, SPASS
\rightarrow Propositional logic (SAT): MiniSAT, Chaff, RSat
\rightarrow SAT modulo theory (SMT): CVC3, Yices, Z3

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.
\rightarrow First-order logic (ATP): Otter, Vampire, E, SPASS
\rightarrow Propositional logic (SAT): MiniSAT, Chaff, RSat
\rightarrow SAT modulo theory (SMT): CVC3, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

Automation in Isabelle

1980s rule applications, write ML code

Automation in Isabelle

1980s rule applications, write ML code
1990s simplifier, automatic provers (blast, auto), arithmetic

Automation in Isabelle

1980s rule applications, write ML code
1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don't trust them (ATP/SMT/SAT)

Sledgehammer

Sledgehammer:
\rightarrow Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3

Sledgehammer

Sledgehammer:
\rightarrow Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3
\rightarrow Simple invocation:
\rightarrow Users don't need to select or know facts
\rightarrow or ensure the problem is first-order
\rightarrow or know anything about the automated prover

Sledgehammer

Sledgehammer:
\rightarrow Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3
\rightarrow Simple invocation:
\rightarrow Users don't need to select or know facts
\rightarrow or ensure the problem is first-order
\rightarrow or know anything about the automated prover
\rightarrow Exploits local parallelism and remote servers

Demo: Sledgehammer

Sledgehammer Architecture

Allo 61
csiro

Fact Selection

Provers perform poorly if given 1000s of facts.
\rightarrow Best number of facts depends on the prover
\rightarrow Need to take care which facts we give them
\rightarrow Idea: order facts by relevance, give top n to prover ($n=250,1000, \ldots$)

Fact Selection

Provers perform poorly if given 1000s of facts.

\rightarrow Best number of facts depends on the prover
\rightarrow Need to take care which facts we give them
\rightarrow Idea: order facts by relevance, give top n to prover ($n=250,1000, \ldots$)
\rightarrow Meng \& Paulson method: lightweight, symbol-based filter

Fact Selection

Provers perform poorly if given 1000s of facts.

\rightarrow Best number of facts depends on the prover
\rightarrow Need to take care which facts we give them
\rightarrow Idea: order facts by relevance, give top n to prover ($n=250,1000, \ldots$)
\rightarrow Meng \& Paulson method: lightweight, symbol-based filter
\rightarrow Machine learning method: look at previous proofs to get a probability of relevance

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed
\rightarrow First-order:
\rightarrow SK combinators, λ-lifting
\rightarrow Explicit function application operator

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed
\rightarrow First-order:
\rightarrow SK combinators, λ-lifting
\rightarrow Explicit function application operator
\rightarrow Encode types:
\rightarrow Monomorphise (generate multiple instances), or
\rightarrow Encode polymorphism on term level

Reconstruction

We don't want to trust the external provers.

Reconstruction

We don't want to trust the external provers.

Need to check/reconstruct proof.

Reconstruction

We don't want to trust the external provers.
Need to check/reconstruct proof.
\rightarrow Re-find using Metis
Usually fast and reliable (sometimes too slow)

Reconstruction

We don't want to trust the external provers.
Need to check/reconstruct proof.
\rightarrow Re-find using Metis
Usually fast and reliable (sometimes too slow)
\rightarrow Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!

Reconstruction

We don't want to trust the external provers.
 Need to check/reconstruct proof.

\rightarrow Re-find using Metis Usually fast and reliable (sometimes too slow)
\rightarrow Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!
\rightarrow Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.

Reconstruction

We don't want to trust the external provers.
 Need to check/reconstruct proof.

\rightarrow Re-find using Metis Usually fast and reliable (sometimes too slow)
\rightarrow Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!
\rightarrow Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.
\rightarrow Recast into structured Isar proof Fast, experimental.

Judgement Day

Evaluating Sledgehammer:

$\rightarrow 1240$ goals out of 7 existing theories.
\rightarrow How many can sledgehammer solve?

Judgement Day

Evaluating Sledgehammer:

$\rightarrow 1240$ goals out of 7 existing theories.
\rightarrow How many can sledgehammer solve?
\rightarrow 2010: E, SPASS, Vampire (for 5-120s). 46\% $E S V \times 5 s \approx V \times 120 s$

Judgement Day

Evaluating Sledgehammer:

$\rightarrow 1240$ goals out of 7 existing theories.
\rightarrow How many can sledgehammer solve?
\rightarrow 2010: E, SPASS, Vampire (for 5-120s). 46\% $E S V \times 5 s \approx V \times 120 s$
\rightarrow 2011: Add E-SInE, CVC2, Yices, Z3 (30s). $Z 3>V$

Judgement Day

Evaluating Sledgehammer:

$\rightarrow 1240$ goals out of 7 existing theories.
\rightarrow How many can sledgehammer solve?
\rightarrow 2010: E, SPASS, Vampire (for 5-120s). 46\% $E S V \times 5 s \approx V \times 120 s$
\rightarrow 2011: Add E-SInE, CVC2, Yices, Z3 (30s). $Z 3>V$
\rightarrow 2012: Better integration with SPASS. 64\% SPASS best (small margin)

Judgement Day

Evaluating Sledgehammer:

$\rightarrow 1240$ goals out of 7 existing theories.
\rightarrow How many can sledgehammer solve?
\rightarrow 2010: E, SPASS, Vampire (for 5-120s). 46\% $E S V \times 5 s \approx V \times 120 s$
\rightarrow 2011: Add E-SInE, CVC2, Yices, Z3 (30s). Z3 > V
\rightarrow 2012: Better integration with SPASS. 64\% SPASS best (small margin)
\rightarrow 2013: Machine learning for fact selection. 69\% Improves a few percent across provers.

Evaluation

Evaluation

3 ATPs $\times 30 \mathrm{~s}$ nontrivial goals

34\%

Evaluation

Sledgehammer rules!

Example application:

\rightarrow Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)
\rightarrow Intricate refinement and termination theorems
\rightarrow Sledgehammer and Z3 automate algebraic proofs at textbook level.

Sledgehammer rules!

Example application:

\rightarrow Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)
\rightarrow Intricate refinement and termination theorems
\rightarrow Sledgehammer and Z3 automate algebraic proofs at textbook level.
"The integration of ATP, SMT, and Nitpick is for our purposes very very helpful." - G. Struth

\square
$\left|\begin{array}{l|l}\text { DATA } \\ 61\end{array}\right| \begin{gathered}\text { Ill｜l｜} \\ \text { csino }\end{gathered}$

號

I

路

號

Disproof

${ }^{2}$

a

，

I

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
\rightarrow Most lemma statements are wrong the first time.
\rightarrow Theorem proving is expensive as a debugging technique.

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
\rightarrow Most lemma statements are wrong the first time.
\rightarrow Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

Quickcheck

Lightweight validation by testing.

Quickcheck

Lightweight validation by testing.

\rightarrow Motivated by Haskell's QuickCheck
\rightarrow Uses Isabelle's code generator
\rightarrow Fast
\rightarrow Runs in background, proves you wrong as you type.

Quickcheck

Covers a number of testing approaches:
\rightarrow Random and exhausting testing.
\rightarrow Smart test data generators.
\rightarrow Narrowing-based (symbolic) testing.

Creates test data generators automatically.

Demo: Quickcheck

Test generators for datatypes

Fast iteration in continuation-passing-style

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) }
$$

Test function:
$\operatorname{test}_{\alpha}$ list $\mathrm{P}=\mathrm{P}$ Nil andalso test ${ }_{\alpha}\left(\lambda \times\right.$. test $_{\alpha}$ list $(\lambda \times s . \mathrm{P}($ Cons $\left.\mathrm{x} \times \mathrm{s}))\right)$

Test generators for predicates

distinct $\mathrm{xs} \Longrightarrow$ distinct (remove1 $\times \mathrm{xs}$)

Problem:
Exhaustive testing creates many useless test cases.

Test generators for predicates

$$
\text { distinct } \times s \Longrightarrow \text { distinct (remove } 1 \times x \text { s) }
$$

Problem:
Exhaustive testing creates many useless test cases.
Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

Test generators for predicates

$$
\text { distinct } \times s \Longrightarrow \text { distinct (remove } 1 \times \times s \text {) }
$$

Problem:

Exhaustive testing creates many useless test cases.
Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.
test-distinct ${ }_{\alpha}$ list $P=P$ Nil andalso
test $_{\alpha}$ (λx. test-distinct t_{α} list (if $x \notin x$ s then (λx s. $P($ Cons $x \times s)$) else True))

Test generators for predicates

$$
\text { distinct } \times s \Longrightarrow \text { distinct (remove } 1 \times \times s \text {) }
$$

Problem:

Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.
test-distinct list $P=P$ Nil andalso
test $_{\alpha}$ (λx. test-distinct t_{α} list (if $x \notin x$ s then (λx s. $P($ Cons $x \times s)$) else True))

Use data flow analysis to figure out which variables must be computed and which generated.

Narrowing

Symbolic execution with demand-driven refinement
\rightarrow Test cases can contain variables
\rightarrow If execution cannot proceed: instantiate with further symbolic terms

Narrowing

Symbolic execution with demand-driven refinement
\rightarrow Test cases can contain variables
\rightarrow If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded: distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Narrowing

Symbolic execution with demand-driven refinement
\rightarrow Test cases can contain variables
\rightarrow If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded: distinct (Cons 1 (Cons $1 \times$))
False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

Quickcheck Limitations

Only executable specifications!

\rightarrow No equality on functions with infinite domain
\rightarrow No axiomatic specifications

Nitpick

'í

Nitpick

Finite model finder

\rightarrow Based on SAT via Kodkod (backend of Alloy prover)
\rightarrow Soundly approximates infinite types

Nitpick Successes

\rightarrow Algebraic methods
\rightarrow C ++ memory model
\rightarrow Found soundness bugs in TPS and LEO-II

Nitpick Successes

\rightarrow Algebraic methods
\rightarrow C ++ memory model
\rightarrow Found soundness bugs in TPS and LEO-II

Fan mail:

"Last night I got stuck on a goal I was sure was a theorem. After 5-10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample-despite the mess of locales and type classes in the context!"

Demo: Nitpick

We have seen today ...

\rightarrow Proof: Sledgehammer

We have seen today ...

\rightarrow Proof: Sledgehammer
\rightarrow Counter examples: Quickcheck

We have seen today ...

\rightarrow Proof: Sledgehammer
\rightarrow Counter examples: Quickcheck
\rightarrow Counter examples: Nitpick

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

