Chapter 1

A Header

theory Demo $=$ Main:

1.1 A Section

1.1.1 A subsection

A subsubsection
Here some text with some antiquotations:
'a list, $x \#$ xs, $x \# x s=y \# y s$, any text
$\llbracket P[] ; \wedge a$ list. P list $\Longrightarrow P(a \#$ list $) \rrbracket \Longrightarrow P$ list

Keywords are printed bold, rest is just copied verbatim into the document:
lemma $a=a$

- not a difficult proof
- note that the double quotes do not appear in the ouptput proof -
but we could still want to have a longer text in here and do $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ tricks:
- show $a=a$ by force
qed
end

Chapter 2

More On Locales

```
locale agroup \(=\) group +
    assumes com: \(x \cdot y=y \cdot x\)
```

We are now in the agroup context where assumption com: $x \cdot y=y \cdot x$ is visible without any further premises.
All inherited and proved theorems of the group context are available as well:
$x \cdot y \cdot z=x \cdot(y \cdot z)$
$1 \cdot x=x$
$x^{-} \cdot x=1$
$x \cdot \mathbf{1}=x$
$x \cdot x^{-}=1$
etc.

Outside the context, these theorems would look like this. (for fun we replace \Longrightarrow by \longrightarrow in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$).
agroup prod one inv \longrightarrow prod $x y=\operatorname{prod} y x$
semi prod $\longrightarrow \operatorname{prod}(\operatorname{prod} x y) z=\operatorname{prod} x(\operatorname{prod} y z)$
group prod one inv \longrightarrow prod one $x=x$
group prod one inv \longrightarrow prod (inv x) $x=$ one
group prod one inv \longrightarrow prod x one $=x$
group prod one inv \longrightarrow prod $x($ inv $x)=$ one
Changing existing output syntax:

```
syntax (latex output)
    Cons :: 'a m 'a list }=>\mathrm{ ' 'a list (--/- [66,65] 65)
```

Now existing function definitios look different:

```
\(\operatorname{map} f[]=[]\)
map \(f(x \cdot x s)=f x \cdot m a p f x s\)
```

Creating new symbols and changing output syntax:

syntax (latex)

notEx $\quad::\left({ }^{\prime} a=>\right.$ bool $)=>$ bool (binder $\left.\neg \exists 10\right)$
translations
$\neg \exists x . P==\neg(\exists x . P)$
lemma $(\forall x . \neg P x)=(\neg \exists x . P x)$ by blast

