
NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

a = b ≤ c ≤ . . .

1



CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• More recursion, Calculational reasoning

• Hoare logic, proofs about programs

• Locales, Presentation

CONTENT 2



LAST WEEK

➜ Constructive Logic & Curry-Howard-Isomorphism

➜ The Coq System

➜ The HOL4 system

➜ Before that: datatypes, recursion, induction

LAST WEEK 3



LAST WEEK

➜ Constructive Logic & Curry-Howard-Isomorphism

➜ The Coq System

➜ The HOL4 system

➜ Before that: datatypes, recursion, induction

LAST WEEK 3-A



LAST WEEK

➜ Constructive Logic & Curry-Howard-Isomorphism

➜ The Coq System

➜ The HOL4 system

➜ Before that: datatypes, recursion, induction

LAST WEEK 3-B



LAST WEEK

➜ Constructive Logic & Curry-Howard-Isomorphism

➜ The Coq System

➜ The HOL4 system

➜ Before that: datatypes, recursion, induction

LAST WEEK 3-C



GENERAL RECURSION

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, prove termination manually

• recdef

GENERAL RECURSION 4



GENERAL RECURSION

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, prove termination manually

• recdef

GENERAL RECURSION 4-A



GENERAL RECURSION

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, prove termination manually

• recdef

GENERAL RECURSION 4-B



RECDEF — EXAMPLES

consts sep :: ”’a × ’a list ⇒ ’a list”
recdef sep ”measure (λ(a, xs). size xs)”

”sep (a, x # y # zs) = x # a # sep (a, y # zs)”
”sep (a, xs) = xs”

consts ack :: ”nat × nat ⇒ nat”
recdef ack ”measure (λm. m) <*lex*> measure (λn. n)”

”ack (0, n) = Suc n”
”ack (Suc m, 0) = ack (m, 1)”
”ack (Suc m, Suc n) = ack (m, ack (Suc m, n))”

RECDEF — EXAMPLES 5



RECDEF — EXAMPLES

consts sep :: ”’a × ’a list ⇒ ’a list”
recdef sep ”measure (λ(a, xs). size xs)”

”sep (a, x # y # zs) = x # a # sep (a, y # zs)”
”sep (a, xs) = xs”

consts ack :: ”nat × nat ⇒ nat”
recdef ack ”measure (λm. m) <*lex*> measure (λn. n)”

”ack (0, n) = Suc n”
”ack (Suc m, 0) = ack (m, 1)”
”ack (Suc m, Suc n) = ack (m, ack (Suc m, n))”

RECDEF — EXAMPLES 5-A



RECDEF

➜ The definiton:

• one parameter

• free pattern matching, order of rules important

• termination relation

(measure sufficient for most cases)

➜ Termination relation:

• must decrease for each recursive call

• must be well founded

➜ Generates own induction principle

RECDEF 6



RECDEF

➜ The definiton:

• one parameter

• free pattern matching, order of rules important

• termination relation

(measure sufficient for most cases)

➜ Termination relation:

• must decrease for each recursive call

• must be well founded

➜ Generates own induction principle

RECDEF 6-A



RECDEF

➜ The definiton:

• one parameter

• free pattern matching, order of rules important

• termination relation

(measure sufficient for most cases)

➜ Termination relation:

• must decrease for each recursive call

• must be well founded

➜ Generates own induction principle

RECDEF 6-B



RECDEF — INDUCTION PRINCIPLE

➜ Each recdef definition induces an induction principle

➜ For each equation:

show that the property holds for the lhs provided it holds for each
recursive call on the rhs

➜ Example sep.induct:
[[

V

a. P a [];
V

a w. P a [w]
V

a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

RECDEF — INDUCTION PRINCIPLE 7



RECDEF — INDUCTION PRINCIPLE

➜ Each recdef definition induces an induction principle

➜ For each equation:

show that the property holds for the lhs provided it holds for each
recursive call on the rhs

➜ Example sep.induct:
[[

V

a. P a [];
V

a w. P a [w]
V

a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

RECDEF — INDUCTION PRINCIPLE 7-A



RECDEF — INDUCTION PRINCIPLE

➜ Each recdef definition induces an induction principle

➜ For each equation:

show that the property holds for the lhs provided it holds for each
recursive call on the rhs

➜ Example sep.induct:
[[

V

a. P a [];
V

a w. P a [w]
V

a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

RECDEF — INDUCTION PRINCIPLE 7-B



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not ⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not

⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8-A



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not ⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8-B



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not ⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8-C



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not ⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8-D



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not ⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8-E



TERMINATION

Isabelle tries to prove termination automatically

➜ For most functions and termination relations this works.

➜ Sometimes not ⇒ error message with unsolved subgoal

➜ You can give hints (additional lemmas) to the recdef package:

recdef quicksort ”measure length”

quicksort [] = []

quicksort (x#xs) = quicksort [y ∈ xs.y ≤ x]@[x]@ quicksort [y ∈ xs.x < y]

(hints recdef simp: less Suc eq le)

For exploration:

➜ allow failing termination proof

➜ recdef (permissive) quicksort ”measure length”

➜ termination conditions as assumption in simp and induct rules

TERMINATION 8-F



DEMO

9



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10-A



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10-B



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10-C



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10-D



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10-E



HOW DOES RECDEF WORK?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f = 0 f (Suc n) = fn

➜ as one λ-term: f = λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ functor: F = λf. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ f n

➜ rec :: ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β) like above cannot exist in
HOL (only total functions)

➜ But ’guarded’ form possible:
wfrec :: (α × α) set ⇒ ((α ⇒ β) ⇒ (α ⇒ β)) ⇒ (α ⇒ β)

➜ (α × α) set a well founded order, decreasing with execution

HOW DOES RECDEF WORK? 10-F



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11-A



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11-B



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11-C



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11-D



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11-E



HOW DOES RECDEF WORK?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

HOW DOES RECDEF WORK? 11-F



WELL FOUNDED ORDERS

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x.Py) =⇒ Px

Pa

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min r Q x ≡ ∀y ∈ Q. y 6<r x

wf r = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

WELL FOUNDED ORDERS 12



WELL FOUNDED ORDERS

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x.Py) =⇒ Px

Pa

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min r Q x ≡ ∀y ∈ Q. y 6<r x

wf r = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

WELL FOUNDED ORDERS 12-A



WELL FOUNDED ORDERS

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x.Py) =⇒ Px

Pa

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min r Q x ≡ ∀y ∈ Q. y 6<r x

wf r = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

WELL FOUNDED ORDERS 12-B



WELL FOUNDED ORDERS: EXAMPLES

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <1 y is well founded
if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES 13



WELL FOUNDED ORDERS: EXAMPLES

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <1 y is well founded
if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES 13-A



WELL FOUNDED ORDERS: EXAMPLES

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <1 y is well founded
if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES 13-B



WELL FOUNDED ORDERS: EXAMPLES

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <1 y is well founded
if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES 13-C



WELL FOUNDED ORDERS: EXAMPLES

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <1 y is well founded
if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES 13-D



WELL FOUNDED ORDERS: EXAMPLES

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <1 y is well founded
if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES 13-E



THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F ) not possible

Idea:

have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α ⇒ β) ⇒ (α × α) set ⇒ α ⇒ (α ⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

wf R =⇒ wfrec R F x = F (cut (wfrec R F ) R x) x

THE RECURSION OPERATOR 14



THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α ⇒ β) ⇒ (α × α) set ⇒ α ⇒ (α ⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

wf R =⇒ wfrec R F x = F (cut (wfrec R F ) R x) x

THE RECURSION OPERATOR 14-A



THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α ⇒ β) ⇒ (α × α) set ⇒ α ⇒ (α ⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

wf R =⇒ wfrec R F x = F (cut (wfrec R F ) R x) x

THE RECURSION OPERATOR 14-B



THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α ⇒ β) ⇒ (α × α) set ⇒ α ⇒ (α ⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

wf R =⇒ wfrec R F x = F (cut (wfrec R F ) R x) x

THE RECURSION OPERATOR 14-C



THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α ⇒ β) ⇒ (α × α) set ⇒ α ⇒ (α ⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

wf R =⇒ wfrec R F x = F (cut (wfrec R F ) R x) x

THE RECURSION OPERATOR 14-D



THE RECURSION OPERATOR

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec: again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15



THE RECURSION OPERATOR

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec: again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15-A



THE RECURSION OPERATOR

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec: again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x,

F g x

) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15-B



THE RECURSION OPERATOR

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec: again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15-C



THE RECURSION OPERATOR

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec: again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15-D



THE RECURSION OPERATOR

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec: again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15-E



DEMO

16



CALCULATIONAL REASONING

17



THE GOAL

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply stile

➜ Isar: with the methods we know, too verbose

THE GOAL 18



THE GOAL

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply stile

➜ Isar: with the methods we know, too verbose

THE GOAL 18-A



THE GOAL

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply stile

➜ Isar: with the methods we know, too verbose

THE GOAL 18-B



THE GOAL

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply stile

➜ Isar: with the methods we know, too verbose

THE GOAL 18-C



THE GOAL

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply stile

➜ Isar: with the methods we know, too verbose

THE GOAL 18-D



CHAINS OF EQUATIONS

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

CHAINS OF EQUATIONS 19



CHAINS OF EQUATIONS

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

CHAINS OF EQUATIONS 19-A



CHAINS OF EQUATIONS

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

CHAINS OF EQUATIONS 19-B



CHAINS OF EQUATIONS

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

CHAINS OF EQUATIONS 19-C



CHAINS OF EQUATIONS

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

CHAINS OF EQUATIONS 19-D



ALSO/FINALLY

have ”t0 = t1” [proof]

calculation register

also

”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-A



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-B



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”

...
...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-C



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-D



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-E



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-F



ALSO/FINALLY

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

ALSO/FINALLY 20-G



MORE ABOUT ALSO

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].

➜ To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

MORE ABOUT ALSO 21



MORE ABOUT ALSO

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].

➜ To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

MORE ABOUT ALSO 21-A



MORE ABOUT ALSO

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].

➜ To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

MORE ABOUT ALSO 21-B



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-A



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-B



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-C



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-D



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-E



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-F



DESIGING [TRANS] RULES

calculation = ”l1 � r1”

have ”. . . � r2” [proof]

also ⇐=

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2

➜ More general form: [[P l1 r1; Q r1 r2; A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
V

x y. x < y =⇒ f x < f y]] =⇒ a < f c

DESIGING [TRANS] RULES 22-G



DEMO

23



WE HAVE SEEN TODAY ...

➜ Recdef

➜ More induction

➜ Well founded orders

➜ Well founded recursion

➜ Calculations: also/finally

➜ [trans]-rules

WE HAVE SEEN TODAY ... 24



EXERCISES

➜ Define a predicate sorted over lists

➜ Show that sorted (quicksort xs) holds

➜ Look at http://isabelle.in.tum.de/library/HOL/
Wellfounded_Recursion.html

➜ Show that in groups, the left-one is also a right-one: x · 1 = x

(you can use the right inv lemma from the demo)

➜ Take an algebra textbook and formalize a simple theorem over groups
in Isabelle.

EXERCISES 25


