

NICTA Advanced Course

Theorem Proving<br>Principles, Techniques, Applications

$$
a=b \leq c \leq \ldots
$$

## Content

$\rightarrow$ Intro \& motivation, getting started with Isabelle
$\rightarrow$ Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
$\rightarrow$ Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation


## Last Week

$\rightarrow$ Constructive Logic \& Curry-Howard-Isomorphism

## Last Week

$\rightarrow$ Constructive Logic \& Curry-Howard-Isomorphism
$\rightarrow$ The Coq System

## Last Week

$\rightarrow$ Constructive Logic \& Curry-Howard-Isomorphism
$\rightarrow$ The Coq System
$\rightarrow$ The HOL4 system

## Last Week

$\rightarrow$ Constructive Logic \& Curry-Howard-Isomorphism
$\rightarrow$ The Coq System
$\rightarrow$ The HOL4 system
$\rightarrow$ Before that: datatypes, recursion, induction

## General Recursion

## The Choice

## General Recursion

## The Choice

$\rightarrow$ Limited expressiveness, automatic termination

- primrec


## General Recursion

## The Choice

$\rightarrow$ Limited expressiveness, automatic termination

- primrec
$\rightarrow$ High expressiveness, prove termination manually
- recdef


## RECDEF - EXAMPLES

consts sep :: "'a $\times$ 'a list $\Rightarrow$ 'a list"
recdef sep "measure ( $\lambda(\mathrm{a}, \mathrm{xs})$. size xs$)$ "
"sep ( $\mathrm{a}, \mathrm{x}$ \# y \# zs) = x \# a \# sep (a, y \# zs)"
"sep $(a, x s)=x s "$

## RECDEF - EXAMPLES

consts sep :: "'a $\times$ ' a list $\Rightarrow$ ' a list"
recdef sep "measure ( $\lambda(\mathrm{a}, \mathrm{xs})$. size xs$)$ "
"sep ( $\mathrm{a}, \mathrm{x}$ \# y \# zs) $=\mathrm{x}$ \# a \# sep ( $\mathrm{a}, \mathrm{y}$ \# zs)"
"sep $(a, x s)=x s "$
consts ack :: "nat $\times$ nat $\Rightarrow$ nat"
recdef ack "measure ( $\lambda \mathrm{m} . \mathrm{m}$ ) < *lex* $>$ measure ( $\lambda \mathrm{n} . \mathrm{n}$ )"
"ack (0, n) = Suc n"
"ack (Suc m, 0) = ack (m, 1)"
"ack (Suc $m$, Suc $n$ ) = ack (m, ack (Suc $m, n)$ )"

## RECDEF

$\rightarrow$ The definiton:

- one parameter
- free pattern matching, order of rules important
- termination relation
(measure sufficient for most cases)


## RECDEF

$\rightarrow$ The definiton:

- one parameter
- free pattern matching, order of rules important
- termination relation
(measure sufficient for most cases)
$\rightarrow$ Termination relation:
- must decrease for each recursive call
- must be well founded


## RECDEF

$\rightarrow$ The definiton:

- one parameter
- free pattern matching, order of rules important
- termination relation
(measure sufficient for most cases)
$\rightarrow$ Termination relation:
- must decrease for each recursive call
- must be well founded
$\rightarrow$ Generates own induction principle


## RECDEF - INDUCTION PRINCIPLE

$\rightarrow$ Each recdef definition induces an induction principle

## RECDEF - INDUCTION PRINCIPLE

$\rightarrow$ Each recdef definition induces an induction principle
$\rightarrow$ For each equation:
show that the property holds for the lhs provided it holds for each recursive call on the rhs

## RECDEF - INDUCTION PRINCIPLE

$\rightarrow$ Each recdef definition induces an induction principle
$\rightarrow$ For each equation:
show that the property holds for the lhs provided it holds for each recursive call on the rhs
$\rightarrow$ Example sep.induct:

$$
\begin{aligned}
& \llbracket \bigwedge a \cdot P a[] \\
& \bigwedge a w \cdot P a[w] \\
& \bigwedge a x y z s \cdot P a(y \# z s) \Longrightarrow P a(x \# y \# z s) \\
& \rrbracket \Longrightarrow P a x s
\end{aligned}
$$

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.
$\rightarrow$ Sometimes not

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.
$\rightarrow$ Sometimes not $\Rightarrow$ error message with unsolved subgoal

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.
$\rightarrow$ Sometimes not $\Rightarrow$ error message with unsolved subgoal
$\rightarrow$ You can give hints (additional lemmas) to the recdef package:
recdef quicksort "measure length"
quicksort [] = []
quicksort $(x \# x s)=$ quicksort $[y \in x s . y \leq x] @[x] @$ quicksort $[y \in x s . x<y]$ (hints recdef_simp: less_Suc_eq_le)

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.
$\rightarrow$ Sometimes not $\Rightarrow$ error message with unsolved subgoal
$\rightarrow$ You can give hints (additional lemmas) to the recdef package:
recdef quicksort "measure length"
quicksort [] = []
quicksort $(x \# x s)=$ quicksort $[y \in x s . y \leq x] @[x] @$ quicksort $[y \in x s . x<y]$ (hints recdef_simp: less_Suc_eq_le)

## For exploration:

$\rightarrow$ allow failing termination proof

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.
$\rightarrow$ Sometimes not $\Rightarrow$ error message with unsolved subgoal
$\rightarrow$ You can give hints (additional lemmas) to the recdef package:
recdef quicksort "measure length"
quicksort [] = []
quicksort $(x \# x s)=$ quicksort $[y \in x s . y \leq x] @[x] @$ quicksort $[y \in x s . x<y]$ (hints recdef_simp: less_Suc_eq_le)

## For exploration:

$\rightarrow$ allow failing termination proof
$\rightarrow$ recdef (permissive) quicksort "measure length"

## Termination

## Isabelle tries to prove termination automatically

$\rightarrow$ For most functions and termination relations this works.
$\rightarrow$ Sometimes not $\Rightarrow$ error message with unsolved subgoal
$\rightarrow$ You can give hints (additional lemmas) to the recdef package:
recdef quicksort "measure length"
quicksort [] = []
quicksort $(x \# x s)=$ quicksort $[y \in x s . y \leq x] @[x] @$ quicksort $[y \in x s . x<y]$
(hints recdef_simp: less_Suc_eq_le)

## For exploration:

$\rightarrow$ allow failing termination proof
$\rightarrow$ recdef (permissive) quicksort "measure length"
$\rightarrow$ termination conditions as assumption in simp and induct rules

## Demo

## How does recdef work?

## We need:

general recursion operator

## How does recdef work?

We need: general recursion operator<br>something like: $\quad \operatorname{rec} F=F(\operatorname{rec} F)$

## How does recdef work?



## Example:

## How does recdef work?

## We need:

 something likegeneral recursion operator

```
rec F=F(rec F)
```

( $F$ stands for the recursion equations)

## Example:

$\rightarrow$ recursion equations: $\quad f=0 \quad f($ Suc $n)=f n$

## How does recdef work?

## We need: general recursion operator <br> something like: $\quad \operatorname{rec} F=F(\operatorname{rec} F)$ <br> ( $F$ stands for the recursion equations)

## Example:

$\rightarrow$ recursion equations: $f=0 \quad f($ Suc $n)=f n$
$\rightarrow$ as one $\lambda$-term: $\quad f=\lambda n^{\prime}$. case $n^{\prime}$ of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$

## How does recdef work?

We need:
something like:
general recursion operator
$\operatorname{rec} F=F(\operatorname{rec} F)$
( $F$ stands for the recursion equations)

## Example:

$\rightarrow$ recursion equations: $\quad f=0 \quad f$ (Suc $n)=f n$
$\rightarrow$ as one $\lambda$-term: $\quad f=\lambda n^{\prime}$. case $n^{\prime}$ of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$
$\rightarrow$ functor: $F=\lambda f$. $\lambda n^{\prime}$. case $n^{\prime}$ of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$

## How does recdef work?

## We need:

something like:
general recursion operator
rec $F=F(\operatorname{rec} F)$
( $F$ stands for the recursion equations)

## Example:

$\rightarrow$ recursion equations: $\quad f=0 \quad f($ Suc $n)=f n$
$\rightarrow$ as one $\lambda$-term: $\quad f=\lambda n^{\prime}$. case $n^{\prime}$ of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$
$\rightarrow$ functor: $F=\lambda f$. $\lambda n^{\prime}$. case $n^{\prime}$ of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$
$\rightarrow$ rec $::((\alpha \Rightarrow \beta) \Rightarrow(\alpha \Rightarrow \beta)) \Rightarrow(\alpha \Rightarrow \beta)$ like above cannot exist in HOL (only total functions)
$\rightarrow$ But 'guarded' form possible: wfrec $::(\alpha \times \alpha)$ set $\Rightarrow((\alpha \Rightarrow \beta) \Rightarrow(\alpha \Rightarrow \beta)) \Rightarrow(\alpha \Rightarrow \beta)$
$\rightarrow(\alpha \times \alpha)$ set a well founded order, decreasing with execution

## How does recdef work?

Why rec $F=F($ rec $F)$ ?

## How does recdef work?

$$
\text { Why rec } F=F(\operatorname{rec} F) \text { ? }
$$

## Because we want the recursion equations to hold.

```
Example:
    \(F \equiv \lambda g . \lambda n^{\prime}\). case \(n^{\prime}\) of \(0 \Rightarrow 0 \mid\) Suc \(n \Rightarrow g n\)
\(f \equiv \operatorname{rec} F\)
```


## How does recdef work?

$$
\text { Why rec } F=F(\operatorname{rec} F) \text { ? }
$$

## Because we want the recursion equations to hold.

$$
\begin{aligned}
& \text { Example: } \\
& \begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} \text {. case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0
\end{aligned}
\end{aligned}
$$

## How does recdef work?

$$
\text { Why rec } F=F(\operatorname{rec} F) \text { ? }
$$

## Because we want the recursion equations to hold.

$$
\begin{aligned}
& \text { Example: } \\
& \begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} \text {. case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(\operatorname{rec} F) 0
\end{aligned}
\end{aligned}
$$

## How does recdef work?

$$
\text { Why rec } F=F(\operatorname{rec} F) \text { ? }
$$

## Because we want the recursion equations to hold.

## Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(\operatorname{rec} F) 0 \\
\ldots & =\left(\lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n\right)(\operatorname{rec} F) 0
\end{aligned}
$$

## How does recdef work?

$$
\text { Why rec } F=F(\operatorname{rec} F) \text { ? }
$$

## Because we want the recursion equations to hold.

## Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(\operatorname{rec} F) 0 \\
\ldots & =\left(\lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n\right)(\operatorname{rec} F) 0 \\
\ldots & =\text { (case } 0 \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow \operatorname{rec} F n)
\end{aligned}
$$

## How does recdef work?

$$
\text { Why rec } F=F(\operatorname{rec} F) \text { ? }
$$

## Because we want the recursion equations to hold.

## Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(\operatorname{rec} F) 0 \\
\ldots & =\left(\lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n\right)(\operatorname{rec} F) 0 \\
\ldots & =(\text { case } 0 \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow \operatorname{rec} F n) \\
\ldots & =0
\end{aligned}
$$

## Well Founded Orders

## Definition

$<_{r}$ is well founded if well founded induction holds

$$
\mathrm{wf} r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)
$$

## Well Founded Orders

## Definition

$<_{r}$ is well founded if well founded induction holds

$$
\mathrm{wf} r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)
$$

Well founded induction rule:

$$
\frac{\text { wf } r \wedge x .\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

## Well Founded Orders

## Definition

$<_{r}$ is well founded if well founded induction holds
wf $r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)$

Well founded induction rule:

$$
\frac{\text { wf } r \wedge x .\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

Alternative definition (equivalent):
there are no infi nite descending chains, or (equivalent):
every nonempty set has a minimal element wrt $<_{r}$

$$
\begin{aligned}
\min r Q x & \equiv \forall y \in Q \cdot y \not{ }_{r} x \\
\operatorname{wf} r & =(\forall Q \neq\{ \} \cdot \exists m \in Q \cdot \min r Q m)
\end{aligned}
$$

## Well Founded Orders: Examples

$\rightarrow<$ on $\mathbb{N}$ is well founded
well founded induction = complete induction

## Well Founded Orders: Examples

$\rightarrow<$ on $\mathbb{N}$ is well founded
well founded induction = complete induction
$\rightarrow>$ and $\leq$ on $\mathbb{N}$ are not well founded

## Well Founded Orders: Examples

$\rightarrow<$ on $\mathbb{N}$ is well founded
well founded induction = complete induction
$\rightarrow>$ and $\leq$ on $\mathbb{N}$ are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on $\mathbb{N}$ is well founded the minimal elements are the prime numbers

## Well Founded Orders: Examples

$\rightarrow<$ on $\mathbb{N}$ is well founded
well founded induction = complete induction
$\rightarrow \quad>$ and $\leq$ on $\mathbb{N}$ are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on $\mathbb{N}$ is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{1} y$ is well founded if $<_{1}$ and $<_{2}$ are

## Well Founded Orders: Examples

$\rightarrow<$ on $\mathbb{N}$ is well founded
well founded induction = complete induction
$\rightarrow>$ and $\leq$ on $\mathbb{N}$ are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on $\mathbb{N}$ is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{1} y$ is well founded if $<_{1}$ and $<_{2}$ are
$\rightarrow A<_{r} B=A \subset B \wedge$ finite $B$ is well founded

## Well Founded Orders: Examples

$\rightarrow<$ on $\mathbb{N}$ is well founded
well founded induction = complete induction
$\rightarrow>$ and $\leq$ on $\mathbb{N}$ are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on $\mathbb{N}$ is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{1} y$ is well founded if $<_{1}$ and $<_{2}$ are
$\rightarrow A<_{r} B=A \subset B \wedge$ finite $B$ is well founded
$\rightarrow \subseteq$ and $\subset$ in general are not well founded
More about well founded relations: Term Rewriting and All That

## The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible Idea:

## The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible
Idea: have wfrec $R F$ where $R$ is well founded

## The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible
Idea: have wfrec $R F$ where $R$ is well founded

## Cut:

$\rightarrow$ only do recursion if parameter decreases wrt $R$
$\rightarrow$ otherwise: abort

## The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible
Idea: have wfrec $R F$ where $R$ is well founded

## Cut:

$\rightarrow$ only do recursion if parameter decreases wrt $R$
$\rightarrow$ otherwise: abort
$\rightarrow$ arbitrary $:: \alpha$
cut $::(\alpha \Rightarrow \beta) \Rightarrow(\alpha \times \alpha)$ set $\Rightarrow \alpha \Rightarrow(\alpha \Rightarrow \beta)$
cut $G R x \equiv \lambda y$. if $(y, x) \in R$ then $G y$ else arbitrary

## The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible
Idea: have wfrec $R F$ where $R$ is well founded

## Cut:

$\rightarrow$ only do recursion if parameter decreases wrt $R$
$\rightarrow$ otherwise: abort
$\rightarrow$ arbitrary $:: \alpha$
cut $::(\alpha \Rightarrow \beta) \Rightarrow(\alpha \times \alpha)$ set $\Rightarrow \alpha \Rightarrow(\alpha \Rightarrow \beta)$
cut $G R x \equiv \lambda y$. if $(y, x) \in R$ then $G y$ else arbitrary
wf $R \Longrightarrow$ wfrec $R F x=F($ cut $($ wfrec $R F) R x) x$

## The Recursion Operator

## Admissible recursion

$\rightarrow$ recursive call for $x$ only depends on parameters $y<_{R} x$
$\rightarrow$ describes exactly one function if $R$ is well founded

## The Recursion Operator

## Admissible recursion

$\rightarrow$ recursive call for $x$ only depends on parameters $y<_{R} x$
$\rightarrow$ describes exactly one function if $R$ is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

## The Recursion Operator

## Admissible recursion

$\rightarrow$ recursive call for $x$ only depends on parameters $y<{ }_{R} x$
$\rightarrow$ describes exactly one function if $R$ is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

Definition of wf_rec: again fi rst by induction, then by epsilon
$(x, \quad) \in$ wfrec_rel $R F$

## The Recursion Operator

## Admissible recursion

$\rightarrow$ recursive call for $x$ only depends on parameters $y<{ }_{R} x$
$\rightarrow$ describes exactly one function if $R$ is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

Definition of wf_rec: again fi rst by induction, then by epsilon

$$
(x, F g x) \in \text { wfrec_rel } R F
$$

## The Recursion Operator

## Admissible recursion

$\rightarrow$ recursive call for $x$ only depends on parameters $y<{ }_{R} x$
$\rightarrow$ describes exactly one function if $R$ is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

Definition of wf_rec: again fi rst by induction, then by epsilon

$$
\frac{\forall z .(z, x) \in R \longrightarrow(z, g z) \in \text { wfrec_rel } R F}{(x, F g x) \in \text { wfrec_rel } R F}
$$

## The Recursion Operator

## Admissible recursion

$\rightarrow$ recursive call for $x$ only depends on parameters $y<_{R} x$
$\rightarrow$ describes exactly one function if $R$ is well founded
adm_wf $R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x$

Definition of wf_rec: again fi rst by induction, then by epsilon

$$
\frac{\forall z .(z, x) \in R \longrightarrow(z, g z) \in \text { wfrec_rel } R F}{(x, F g x) \in \text { wfrec_rel } R F}
$$

wfrec $R F x \equiv$ THE $y .(x, y) \in$ wfrec_rel $R(\lambda f x . F($ cut $f R x) x)$

More: John Harrison, Inductive definitions: automation and application

## Demo

## Calculational Reasoning

## The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

## The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

## Can we do this in Isabelle?

## The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

## Can we do this in Isabelle?

$\rightarrow$ Simplifier: too eager

## The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

## Can we do this in Isabelle?

$\rightarrow$ Simplifier: too eager
$\rightarrow$ Manual: difficult in apply stile

## The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

## Can we do this in Isabelle?

$\rightarrow$ Simplifier: too eager
$\rightarrow$ Manual: difficult in apply stile
$\rightarrow$ Isar: with the methods we know, too verbose

## Chains of EQUATIONS

## The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d \\
& \text { shows } a=d \text { by transitivity of }=
\end{aligned}
$$

## Chains of EQUATIONS

## The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

## Chains of EQUATIONS

## The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

## Solution in Isar:

$\rightarrow$ Keywords also and finally to delimit steps

## Chalns of equations

## The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

## Solution in Isar:

$\rightarrow$ Keywords also and finally to delimit steps
$\rightarrow \ldots$ : predefined schematic term variable, refers to right hand side of last expression

## Chains of EQUATIONS

## The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

## Solution in Isar:

$\rightarrow$ Keywords also and finally to delimit steps
$\rightarrow \ldots$ : predefined schematic term variable, refers to right hand side of last expression
$\rightarrow$ Automatic use of transitivity rules to connect steps

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
calculation register
$" t_{0}=t_{1} "$

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
calculation register
$" t_{0}=t_{1}$ "

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
also
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
also
:
also
calculation register
$" t_{0}=t_{1} "$

$$
" t_{0}=t_{2} "
$$

$$
\vdots
$$

$$
" t_{0}=t_{n-1} "
$$

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
also
$\vdots$
also
have " $\cdots=t_{n}$ " [proof]
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$
引
$" t_{0}=t_{n-1} "$

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
have "..$=t_{2}$ " [proof]
also
:
also
have " $\cdots=t_{n}$ " [proof]
finally
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$
$\vdots$
$" t_{0}=t_{n-1} "$
$t_{0}=t_{n}$

## ALSO/FINALLY

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
also
:
also
have " $\cdots=t_{n}$ " [proof]
finally
show $P$
-'fi nally' pipes fact " $t_{0}=t_{n}$ " into the proof

## More about also

$\rightarrow$ Works for all combinations of $=, \leq$ and $<$.

## More about also

$\rightarrow$ Works for all combinations of $=, \leq$ and $<$.
$\rightarrow$ Uses all rules declared as [trans].

## More about also

$\rightarrow$ Works for all combinations of $=, \leq$ and $<$.
$\rightarrow$ Uses all rules declared as [trans].
$\rightarrow$ To view all combinations in Proof General:
Isabelle/Isar $\rightarrow$ Show me $\rightarrow$ Transitivity rules

## Desiging [trans] Rules

calculation $=" l_{1} \odot r_{1} "$<br>have ". . . $\odot r_{2}$ " [proof]<br>also $\Longleftarrow$

## Desiging [TRans] Rules

calculation $=" l_{1} \odot r_{1} "$ have ". . . © $r_{2}$ " [proof]<br>also<br>$\qquad$

## Anatomy of a [trans] rule:

$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$

## Desiging [trans] Rules

calculation $=" l_{1} \odot r_{1} "$ have ". . . $\odot r_{2}$ " [proof]<br>also<br>$\qquad$

Anatomy of a [trans] rule:
$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
$\rightarrow$ More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

## Examples:

## Desiging [TRans] Rules

calculation $=" l_{1} \odot r_{1} "$ have ". . . $\odot r_{2}$ " [proof]<br>also<br>$\qquad$

## Anatomy of a [trans] rule:

$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
$\rightarrow$ More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

## Examples:

$\rightarrow$ pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$

## Desiging [trans] Rules

calculation $=" l_{1} \odot r_{1} "$ have ". . . $\odot r_{2}$ " [proof]<br>also<br>$\qquad$

## Anatomy of a [trans] rule:

$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
$\rightarrow$ More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

## Examples:

$\rightarrow$ pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
$\rightarrow$ mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$

## Desiging [trans] Rules

calculation $=" l_{1} \odot r_{1} "$ have ". . . $\odot r_{2}$ " [proof]<br>also<br>$\qquad$

## Anatomy of a [trans] rule:

$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
$\rightarrow$ More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

## Examples:

$\rightarrow$ pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
$\rightarrow$ mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
$\rightarrow$ substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$

## Desiging [trans] Rules

calculation $=" l_{1} \odot r_{1} "$ have ". . . $\odot r_{2}$ " [proof]<br>also<br>$\qquad$

## Anatomy of a [trans] rule:

$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
$\rightarrow$ More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

## Examples:

$\rightarrow$ pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
$\rightarrow$ mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
$\rightarrow$ substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
$\rightarrow$ antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow P$

## Desiging [trans] Rules

```
calculation = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}
have ". . . \odot r re" [proof]
also \Longleftarrow
```


## Anatomy of a [trans] rule:

$\rightarrow$ Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
$\rightarrow$ More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

## Examples:

$\rightarrow$ pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
$\rightarrow$ mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
$\rightarrow$ substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
$\rightarrow$ antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow P$
$\rightarrow$ monotonicity: $\llbracket a=f b ; b<c ; \bigwedge x y . x<y \Longrightarrow f x<f y \rrbracket \Longrightarrow a<f c$

## Demo

## We have seen today ...

$\rightarrow$ Recdef
$\rightarrow$ More induction
$\rightarrow$ Well founded orders
$\rightarrow$ Well founded recursion
$\rightarrow$ Calculations: also/finally
$\rightarrow$ [trans]-rules

## Exercises

$\rightarrow$ Define a predicate sorted over lists
$\rightarrow$ Show that sorted (quicksort $x s$ ) holds
$\rightarrow$ Look at http://isabelle.in.tum.de/library/HOL/ Wellfounded_Recursion.html
$\rightarrow$ Show that in groups, the left-one is also a right-one: $x \cdot 1=x$ (you can use the right_inv lemma from the demo)
$\rightarrow$ Take an algebra textbook and formalize a simple theorem over groups in Isabelle.

