LAST WEEK

- → Constructive Logic & Curry-Howard-Isomorphism
- → The Coq System
- → The HOL4 system
- Slide 3 → Before that: datatypes, recursion, induction

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
- Slide 2 Term rewriting

→ Proof & Specification Techniques

- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

GENERAL RECURSION

The Choice

→ Limited expressiveness, automatic termination

primrec

Slide 4

- → High expressiveness, prove termination manually
 - recdef

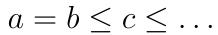
Slide 1

Theorem Proving Principles, Techniques, Applications

NICTA Advanced Course

NATIONAL

ICT AUSTRALIA



RECDEF — **EXAMPLES**

consts sep :: "'a × 'a list \Rightarrow 'a list" recdef sep "measure (λ (a, xs). size xs)"

> "sep (a, x # y # zs) = x # a # sep (a, y # zs)" "sep (a, xs) = xs"

Slide 5

 $\begin{array}{l} \textbf{consts} \ ack :: "nat \times nat \Rightarrow nat"\\ \textbf{recdef} \ ack "measure (\lambda m. m) <*lex*> measure (\lambda n. n)"\\ "ack (0, n) = Suc n"\\ "ack (Suc m, 0) = ack (m, 1)"\\ \end{array}$

"ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"

RECDEF

- → The definiton:
 - one parameter

→ Termination relation:

- free pattern matching, order of rules important
- termination relation

(measure sufficient for most cases)

- Slide 6
- must decrease for each recursive call
- must be well founded
- → Generates own induction principle

RECDEF — INDUCTION PRINCIPLE

- → Each recdef definition induces an induction principle
- → For each equation:

Slide 7

show that the property holds for the lhs provided it holds for each recursive call on the rhs

→ Example sep.induct:

 $\begin{bmatrix} \land a. P a []; \\ \land a w. P a [w] \\ \land a x y zs. P a (y#zs) \Longrightarrow P a (x#y#zs); \\ \end{bmatrix} \Longrightarrow P a xs$

TERMINATION

Isabelle tries to prove termination automatically

- → For most functions and termination relations this works.
- → Sometimes not \Rightarrow error message with unsolved subgoal
- → You can give hints (additional lemmas) to the recdef package:

recdef quicksort "measure length"

Slide 8 quicksort [] = []

quicksort (x # xs) = quicksort $[y \in xs.y \le x]@[x]@$ quicksort $[y \in xs.x < y]$ (hints recdef_simp: less_Suc_eq_Je)

For exploration:

- → allow failing termination proof
- → recdef (permissive) quicksort "measure length"
- → termination conditions as assumption in simp and induct rules

HOW DOES RECDEF WORK?

Why rec F = F (rec F)?

Because we want the recursion equations to hold.

Example:

 $F \equiv \lambda g. \ \lambda n'. \ case \ n' \ of \ 0 \Rightarrow 0 \mid Suc \ n \Rightarrow g \ n$

Slide 11 $f \equiv rec F$

f 0 = rec F 0

 $\dots = F(rec F) 0$

 $\ldots \quad = \quad (\lambda g. \; \lambda n'. \; \mathsf{case} \; n' \; \mathsf{of} \; 0 \Rightarrow 0 | \; \mathsf{Suc} \; n \Rightarrow g \; n) \; (rec \; F) \; 0$

 $\ldots \quad = \quad (\mathsf{case} \; 0 \; \mathsf{of} \; 0 \Rightarrow 0 \; | \; \mathsf{Suc} \; n \Rightarrow rec \; F \; n)$

$$.. = 0$$

HOW DOES RECDEF WORK?

DEMO

We need:general recursion operatorsomething like:rec F = F (rec F)

(*F* stands for the recursion equations)

Example:

→ recursion equations:
$$f = 0$$
 $f(Suc n) = fn$

→ as one
$$\lambda$$
-term: $f = \lambda n'$. case n' of $0 \Rightarrow 0 \mid \mathsf{Suc} \ n \Rightarrow f \ n$

- → functor: $F = \lambda f$. $\lambda n'$. case n' of $0 \Rightarrow 0 | Suc n \Rightarrow f n$
- → $rec :: ((\alpha \Rightarrow \beta) \Rightarrow (\alpha \Rightarrow \beta)) \Rightarrow (\alpha \Rightarrow \beta)$ like above cannot exist in HOL (only total functions)
- → But 'guarded' form possible: wfrec :: $(\alpha \times \alpha)$ set $\Rightarrow ((\alpha \Rightarrow \beta) \Rightarrow (\alpha \Rightarrow \beta)) \Rightarrow (\alpha \Rightarrow \beta)$
- $\twoheadrightarrow~(\alpha\times\alpha)$ set a well founded order, decreasing with execution

Well Founded Orders

Definition

 $<_r$ is well founded if well founded induction holds wf $r \equiv \forall P. \ (\forall x. \ (\forall y <_r x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$

Well founded induction rule:

Slide 12

$$\frac{\text{wf } r \quad \bigwedge x. \ (\forall y <_r x. Py) \Longrightarrow Px}{Pa}$$

Alternative definition (equivalent): there are no infi nite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$

$$\min r Q x \equiv \forall y \in Q. \ y \not<_r x$$

wf $r = (\forall Q \neq \{\}. \exists m \in Q. \min r Q m)$

Slide 10

Well Founded Orders: Examples

- → < on IN is well founded well founded induction = complete induction
- \clubsuit > and \leq on ${\rm I\!N}$ are **not** well founded
- → x <_r y = x dvd y ∧ x ≠ 1 on N is well founded the minimal elements are the prime numbers
- → $(a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_1 y$ is well founded if $<_1$ and $<_2$ are
- → $A <_r B = A \subset B \land$ finite B is well founded
- $\clubsuit \subseteq$ and \subset in general are not well founded

More about well founded relations: Term Rewriting and All That

THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F) not possible

Idea: have wfrec R F where R is well founded

Cut:

 \rightarrow only do recursion if parameter decreases wrt R

Slide 14 → otherwise: abort

Slide 13

→ arbitrary :: α

 $\mathsf{cut} :: (\alpha \Rightarrow \beta) \Rightarrow (\alpha \times \alpha) \mathsf{set} \Rightarrow \alpha \Rightarrow (\alpha \Rightarrow \beta)$ $\mathsf{cut} \ G \ R \ x \equiv \lambda y. \mathsf{ if } (y, x) \in R \mathsf{ then } G \ y \mathsf{ else arbitrary}$

wf
$$R \Longrightarrow$$
 wfrec $R F x = F$ (cut (wfrec $R F$) $R x$) x

THE RECURSION OPERATOR

Admissible recursion

- → recursive call for x only depends on parameters $y <_R x$
- \rightarrow describes exactly one function if R is well founded

 $\mathsf{adm_wf}\; R\; F \equiv \forall f\; g\; x.\; (\forall z.\; (z,x) \in R \longrightarrow f\; z = g\; z) \longrightarrow F\; f\; x = F\; g\; x$

Slide 15 Definition of wf_rec: again first by induction, then by epsilon

 $\frac{\forall z. \; (z,x) \in R \longrightarrow (z,g \; z) \in \mathsf{wfrec_rel} \; R \; F}{(x,F \; g \; x) \in \mathsf{wfrec_rel} \; R \; F}$

wfrec $R F x \equiv \mathsf{THE} y. (x, y) \in \mathsf{wfrec_rel} R (\lambda f x. F (\mathsf{cut} f R x) x)$

More: John Harrison, Inductive definitions: automation and application

Slide 16

Demo

CHAINS OF EQUATIONS

The Problem

Slide 19

 $\begin{array}{rcl} a & = & b \\ \dots & = & c \\ \dots & = & d \end{array}$

... =

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords also and finally to delimit steps
- → …: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

THE GOAL

CALCULATIONAL REASONING

$$\begin{split} x \cdot x^{-1} &= 1 \cdot (x \cdot x^{-1}) \\ \dots &= 1 \cdot x \cdot x^{-1} \\ \dots &= (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\ \dots &= (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1} \\ \dots &= (x^{-1})^{-1} \cdot 1 \cdot x^{-1} \\ \dots &= (x^{-1})^{-1} \cdot (1 \cdot x^{-1}) \\ \dots &= (x^{-1})^{-1} \cdot x^{-1} \\ \dots &= 1 \end{split}$$

Can we do this in Isabelle?

- → Simplifier: too eager
- ➔ Manual: difficult in apply stile
- → Isar: with the methods we know, too verbose

CHAINS OF EQUATIONS

Slide 17

Slide 18

ALSO/FINALLY

	have " $t_0 = t_1$ " [proof]	calculation register
	also	$"t_0 = t_1"$
	have " = t_2 " [proof]	
	also	" $t_0 = t_2$ "
Slide 20	:	:
	also	$t_0 = t_{n-1}$
	have " $\cdots = t_n$ " [proof]	
	finally	$t_0 = t_n$
	show P	
	— 'fi nally' pipes fact " $t_0 = t_n$ " into the proof	

More about also

- → Works for all combinations of $=, \leq$ and <.
- → Uses all rules declared as [trans].

Slide 21 → To view all combinations in Proof General: Isabelle/Isar → Show me → Transitivity rules

DESIGING [TRANS] RULES

calculation = " $l_1 \odot r_1$ " have "... $\odot r_2$ " [proof] also \Leftarrow

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- → More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

Slide 22

- → pure transitivity: $[a = b; b = c] \implies a = c$
- \Rightarrow mixed: $\llbracket a \leq b; b < c \rrbracket \implies a < c$
- → substitution: $\llbracket P \ a; a = b \rrbracket \implies P \ b$
- → antisymmetry: $[a < b; b < a] \implies P$
- → monotonicity: $\llbracket a = f \ b; b < c; \bigwedge x \ y. \ x < y \Longrightarrow f \ x < f \ y \rrbracket \Longrightarrow a < f \ c$

Slide 23

DEMO

WE HAVE SEEN TODAY ...

- → Recdef
- → More induction
- → Well founded orders
- Slide 24 → Well founded recursion
 - → Calculations: also/finally
 - → [trans]-rules

Exercises

EXERCISES

- → Define a predicate **sorted** over lists
- → Show that sorted (quicksort *xs*) holds
- → Look at http://isabelle.in.tum.de/library/HOL/ Wellfounded_Recursion.html

Slide 25

- → Show that in groups, the left-one is also a right-one: $x \cdot 1 = x$ (you can use the right_inv lemma from the demo)
- → Take an algebra textbook and formalize a simple theorem over groups in Isabelle.