
NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

{P} . . . {Q}

1

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• More recursion, Calculational reasoning

• Hoare logic, proofs about programs

• Locales, Presentation

CONTENT 2

LAST TIME

➜ Recdef

➜ More induction

➜ Well founded orders

➜ Well founded recursion

➜ Calculations: also/finally

➜ [trans]-rules

LAST TIME 3

A CRASH COURSE IN SEMANTICS

4

IMP - A SMALL IMPERATIVE LANGUAGE

Commands:

datatype com = SKIP
| Assign loc aexp (:=)

| Semi com com (;)

| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

types loc = string
types state = loc ⇒ nat

types aexp = state ⇒ nat
types bexp = state ⇒ bool

IMP - A SMALL IMPERATIVE LANGUAGE 5

IMP - A SMALL IMPERATIVE LANGUAGE

Commands:

datatype com = SKIP
| Assign loc aexp (:=)

| Semi com com (;)

| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

types loc = string
types state = loc ⇒ nat

types aexp = state ⇒ nat
types bexp = state ⇒ bool

IMP - A SMALL IMPERATIVE LANGUAGE 5-A

IMP - A SMALL IMPERATIVE LANGUAGE

Commands:

datatype com = SKIP
| Assign loc aexp (:=)

| Semi com com (;)

| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

types loc = string
types state = loc ⇒ nat

types aexp = state ⇒ nat
types bexp = state ⇒ bool

IMP - A SMALL IMPERATIVE LANGUAGE 5-B

EXAMPLE PROGRAM

Usual syntax:
B := 1;

WHILE A 6= 0 DO
B := B ∗ A;

A := A − 1

OD

Expressions are functions from state to bool or nat:

B := (λσ. 1);

WHILE (λσ. σ A 6= 0) DO
B := (λσ. σ B ∗ σ A);

A := (λσ. σ A − 1)

OD

EXAMPLE PROGRAM 6

EXAMPLE PROGRAM

Usual syntax:
B := 1;

WHILE A 6= 0 DO
B := B ∗ A;

A := A − 1

OD

Expressions are functions from state to bool or nat:

B := (λσ. 1);

WHILE (λσ. σ A 6= 0) DO
B := (λσ. σ B ∗ σ A);

A := (λσ. σ A − 1)

OD

EXAMPLE PROGRAM 6-A

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

WHAT DOES IT DO? 7

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

WHAT DOES IT DO? 7-A

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need:

the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

WHAT DOES IT DO? 7-B

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

WHAT DOES IT DO? 7-C

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

WHAT DOES IT DO? 7-E

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

WHAT DOES IT DO? 7-F

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True 〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False 〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 8

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→

σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True 〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False 〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 8-A

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True 〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False 〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 8-B

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True

〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False 〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 8-C

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True 〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False

〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 8-D

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True 〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False 〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 8-E

STRUCTURAL OPERATIONAL SEMANTICS

b σ = False

〈WHILE b DO c OD, σ〉 −→

σ

b σ = True 〈c, σ〉 −→ σ′ 〈WHILE b DO c OD, σ′〉 −→ σ′′

〈WHILE b DO c OD, σ〉 −→ σ′′

STRUCTURAL OPERATIONAL SEMANTICS 9

STRUCTURAL OPERATIONAL SEMANTICS

b σ = False

〈WHILE b DO c OD, σ〉 −→ σ

b σ = True 〈c, σ〉 −→ σ′ 〈WHILE b DO c OD, σ′〉 −→ σ′′

〈WHILE b DO c OD, σ〉 −→ σ′′

STRUCTURAL OPERATIONAL SEMANTICS 9-A

STRUCTURAL OPERATIONAL SEMANTICS

b σ = False

〈WHILE b DO c OD, σ〉 −→ σ

b σ = True

〈c, σ〉 −→ σ′ 〈WHILE b DO c OD, σ′〉 −→ σ′′

〈WHILE b DO c OD, σ〉 −→

σ′′

STRUCTURAL OPERATIONAL SEMANTICS 9-B

STRUCTURAL OPERATIONAL SEMANTICS

b σ = False

〈WHILE b DO c OD, σ〉 −→ σ

b σ = True 〈c, σ〉 −→ σ′

〈WHILE b DO c OD, σ′〉 −→ σ′′

〈WHILE b DO c OD, σ〉 −→

σ′′

STRUCTURAL OPERATIONAL SEMANTICS 9-C

STRUCTURAL OPERATIONAL SEMANTICS

b σ = False

〈WHILE b DO c OD, σ〉 −→ σ

b σ = True 〈c, σ〉 −→ σ′ 〈WHILE b DO c OD, σ′〉 −→ σ′′

〈WHILE b DO c OD, σ〉 −→ σ′′

STRUCTURAL OPERATIONAL SEMANTICS 9-D

DEMO: THE DEFINITIONS IN ISABELLE

10

PROOFS ABOUT PROGRAMS

Now we know:

➜ What programs are: Syntax

➜ On what they work: State

➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma 〈factorial, σ〉 −→ σ′ =⇒ σ′B = fac (σA)

(where fac 0 = 0, fac (Suc n) = (Suc n) ∗ fac n)

PROOFS ABOUT PROGRAMS 11

PROOFS ABOUT PROGRAMS

Now we know:

➜ What programs are: Syntax

➜ On what they work: State

➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma 〈factorial, σ〉 −→ σ′ =⇒ σ′B = fac (σA)

(where fac 0 = 0, fac (Suc n) = (Suc n) ∗ fac n)

PROOFS ABOUT PROGRAMS 11-A

PROOFS ABOUT PROGRAMS

Now we know:

➜ What programs are: Syntax

➜ On what they work: State

➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma 〈factorial, σ〉 −→ σ′ =⇒ σ′B = fac (σA)

(where fac 0 = 0, fac (Suc n) = (Suc n) ∗ fac n)

PROOFS ABOUT PROGRAMS 11-B

DEMO: EXAMPLE PROOF

12

TOO TEDIOUS

Induction needed for each loop

Is there something easier?

TOO TEDIOUS 13

TOO TEDIOUS

Induction needed for each loop

Is there something easier?

TOO TEDIOUS 13-A

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:

{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

FLOYD/HOARE 14

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

FLOYD/HOARE 14-A

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

FLOYD/HOARE 14-B

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

FLOYD/HOARE 14-C

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

FLOYD/HOARE 14-D

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

FLOYD/HOARE 14-E

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

MEANING OF A HOARE-TRIPLE 15

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

MEANING OF A HOARE-TRIPLE 15-A

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

MEANING OF A HOARE-TRIPLE 15-B

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

MEANING OF A HOARE-TRIPLE 15-C

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

MEANING OF A HOARE-TRIPLE 15-D

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

MEANING OF A HOARE-TRIPLE 15-E

HOARE RULES

{P} SKIP {P}

{P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-A

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-B

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-C

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q}

{P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-D

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-E

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-F

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-G

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 16-H

HOARE RULES

` {P} SKIP {P} ` {λσ. P (σ(x := e σ))} x := e {P}

` {P} c1 {R} ` {R} c2 {Q}

` {P} c1; c2 {Q}

` {λσ. P σ ∧ b σ} c1 {R} ` {λσ. P σ ∧ ¬b σ} c2 {Q}

` {P} IF b THEN c1 ELSE c2 {Q}

` {λσ. P σ ∧ b σ} c {P}
∧

σ. P σ ∧ ¬b σ =⇒ Q σ

` {P} WHILE b DO c OD {Q}

∧
σ. P σ =⇒ P ′ σ ` {P ′} c {Q′}

∧
σ. Q′ σ =⇒ Qσ

` {P} c {Q}

HOARE RULES 17

ARE THE RULES CORRECT?

Soundness: ` {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ` {P} c {Q}

Demo: Hoare Logic in Isabelle

ARE THE RULES CORRECT? 18

ARE THE RULES CORRECT?

Soundness: ` {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ` {P} c {Q}

Demo: Hoare Logic in Isabelle

ARE THE RULES CORRECT? 18-A

ARE THE RULES CORRECT?

Soundness: ` {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ` {P} c {Q}

Demo: Hoare Logic in Isabelle

ARE THE RULES CORRECT? 18-B

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD
{N = a ∗ b}

NICER, BUT STILL KIND OF TEDIOUS 19

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD
{N = a ∗ b}

NICER, BUT STILL KIND OF TEDIOUS 19-A

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD
{N = a ∗ b}

NICER, BUT STILL KIND OF TEDIOUS 19-B

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD
{N = a ∗ b}

NICER, BUT STILL KIND OF TEDIOUS 19-C

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD
{N = a ∗ b}

NICER, BUT STILL KIND OF TEDIOUS 19-D

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

WEAKEST PRECONDITIONS 20

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

WEAKEST PRECONDITIONS 20-A

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

WEAKEST PRECONDITIONS 20-B

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

WEAKEST PRECONDITIONS 20-C

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

WEAKEST PRECONDITIONS 20-D

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

WEAKEST PRECONDITIONS 20-E

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21-A

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21-B

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21-C

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21-D

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21-E

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

VERIFICATION CONDITIONS 21-F

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22-A

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22-B

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22-C

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22-D

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22-E

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

SYNTAX TRICKS 22-F

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23-A

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23-B

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23-C

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23-D

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23-E

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

RECORDS IN ISABELLE 23-F

DEMO

24

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-A

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-B

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-C

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-D

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-E

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-F

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-G

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

MORE 25-H

WE HAVE SEEN TODAY ...

➜ Syntax and semantics of IMP

➜ Hoare logic rules

➜ Soundness of Hoare logic

➜ Verification conditions

➜ Example program proofs

WE HAVE SEEN TODAY ... 26

EXERCISES

➜ Write a program in IMP that calculates quotient and reminder of
x ∈ IN and y ∈ IN

➜ Find the right invariant for its while loop.

➜ Show its correctness in Isabelle:

` {True} program { Q́ ∗ y + Ŕ = x ∧ Ŕ < y }

➜ Write an IMP program that sorts arrays (lists) by insertion sort.

➜ Formulate and show its correctness in Isabelle.

EXERCISES 27

