

NICTA Advanced Course
Theorem Proving
Principles, Techniques, Applications

$$
\{P\} \ldots\{Q\}
$$

Content

\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

Last Time

\rightarrow Recdef
\rightarrow More induction
\rightarrow Well founded orders
\rightarrow Well founded recursion
\rightarrow Calculations: also/finally
\rightarrow [trans]-rules

A Crash Course in Semantics

IMP - a small Imperative Language

Commands:
datatype com = SKIP
| Assign loc aexp (- := _)
Semi com com (_; -)
Cond bexp com com (IF _ THEN _ ELSE _)
While bexp com
(WHILE - DO _ OD)

IMP - a small Imperative Language

Commands:
datatype com = SKIP
| Assign loc aexp ($\quad:=$ _)
Semi com com (_; -)
Cond bexp com com (IF _ THEN _ ELSE _)
While bexp com
(WHILE _ DO _ OD)
$\begin{array}{ll}\text { types loc } & =\text { string } \\ \text { types state } & =\text { loc } \Rightarrow \text { nat }\end{array}$

IMP - a small Imperative Language

Commands:
datatype com = SKIP
| Assign loc aexp (- := _)
Semi com com (_; _)
Cond bexp com com (IF _ THEN _ ELSE _)
While bexp com
(WHILE _ DO _ OD)
types loc $\quad=$ string
types state $\quad=\quad \mathrm{loc} \Rightarrow$ nat
types aexp $=$ state \Rightarrow nat
types bexp $=$ state \Rightarrow bool

Example Program

Usual syntax:

$$
B:=1 ;
$$

WHILE $A \neq 0$ DO
$B:=B * A ;$
$A:=A-1$
OD

Example Program

Usual syntax:

$$
\begin{aligned}
& B:=1 ; \\
& \text { WHILE } A \neq 0 \text { DO } \\
& \quad B:=B * A \\
& \quad A:=A-1 \\
& \text { OD }
\end{aligned}
$$

Expressions are functions from state to bool or nat:

$$
\begin{aligned}
& B:=(\lambda \sigma .1) ; \\
& \text { WHILE }(\lambda \sigma \cdot \sigma A \neq 0) \mathrm{DO} \\
& \quad B:=(\lambda \sigma \cdot \sigma B * \sigma A) ; \\
& \quad A:=(\lambda \sigma \cdot \sigma A-1) \\
& \text { OD }
\end{aligned}
$$

What does it do?

So far we have defined:

What does it do?

So far we have defined:
\rightarrow Syntax of commands and expressions

What does it do?

So far we have defined:

\rightarrow Syntax of commands and expressions
\rightarrow State of programs (function from variables to values)

Now we need:

What does it do?

So far we have defined:
\rightarrow Syntax of commands and expressions
\rightarrow State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

What does it do?

So far we have defined:
\rightarrow Syntax of commands and expressions
\rightarrow State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

\rightarrow A wide field of its own (visit a semantics course!)

What does it do?

So far we have defined:

\rightarrow Syntax of commands and expressions
\rightarrow State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

\rightarrow A wide field of its own (visit a semantics course!)
\rightarrow Some choices:

- Operational (inductive relations, big step, small step)
- Denotational (programs as functions on states, state transformers)
- Axiomatic (pre-/post conditions, Hoare logic)

Structural Operational Semantics

$\overline{\langle\text { SKIP }, \sigma\rangle \longrightarrow \sigma}$

Structural Operational Semantics

$$
\overline{\langle\mathrm{SKIP}, \sigma\rangle \longrightarrow \sigma}
$$

$$
\overline{\langle x:=e}, \sigma\rangle \longrightarrow
$$

Structural Operational Semantics

$$
\begin{gathered}
\overline{\langle\mathrm{SKIP}, \sigma\rangle \longrightarrow \sigma} \\
\frac{e \sigma=v}{\langle\mathrm{x}:=\mathrm{e}, \sigma\rangle \longrightarrow \sigma[x \mapsto v]} \\
\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime \prime}
\end{gathered}
$$

Structural Operational Semantics

$$
\begin{gathered}
\overline{\langle\mathrm{SKIP}, \sigma\rangle \longrightarrow \sigma} \\
\frac{e \sigma=v}{\langle\mathrm{x}:=\mathrm{e}, \sigma\rangle \longrightarrow \sigma[x \mapsto v]} \\
\frac{\left\langle c_{1}, \sigma\right\rangle \longrightarrow \sigma^{\prime} \quad\left\langle c_{2}, \sigma^{\prime}\right\rangle \longrightarrow \sigma^{\prime \prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime \prime}} \\
\frac{b \sigma=\text { True }}{\left\langle\mathrm{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime}}
\end{gathered}
$$

Structural Operational Semantics

$$
\begin{gathered}
\overrightarrow{\langle\mathrm{SKIP}, \sigma\rangle \longrightarrow \sigma} \\
\frac{e \sigma=v}{\langle\mathrm{x}:=\mathrm{e}, \sigma\rangle \longrightarrow \sigma[x \mapsto v]} \\
\frac{\left\langle c_{1}, \sigma\right\rangle \longrightarrow \sigma^{\prime} \quad\left\langle c_{2}, \sigma^{\prime}\right\rangle \longrightarrow \sigma^{\prime \prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime \prime}} \\
\frac{b \sigma=\text { True }\left\langle c_{1}, \sigma\right\rangle \longrightarrow \sigma^{\prime}}{\left\langle\mathrm{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime}} \\
\frac{b \sigma=\text { False }}{\left\langle\mathrm{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime}}
\end{gathered}
$$

Structural Operational Semantics

$$
\begin{gathered}
\overrightarrow{\langle\mathrm{SKIP}, \sigma\rangle \longrightarrow \sigma} \\
\frac{e \sigma=v}{\langle\mathrm{x}:=\mathrm{e}, \sigma\rangle \longrightarrow \sigma[x \mapsto v]} \\
\frac{\left\langle c_{1}, \sigma\right\rangle \longrightarrow \sigma^{\prime} \quad\left\langle c_{2}, \sigma^{\prime}\right\rangle \longrightarrow \sigma^{\prime \prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime \prime}} \\
\frac{b \sigma=\text { True }\left\langle c_{1}, \sigma\right\rangle \longrightarrow \sigma^{\prime}}{\left\langle\mathrm{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime}} \\
\frac{b \sigma=\text { False }\left\langle c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime}}{\left\langle\mathrm{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime}}
\end{gathered}
$$

Structural Operational Semantics

$\overline{\langle\text { WHILE } b \text { DO } c \text { OD, } \sigma\rangle \longrightarrow}$

Structural Operational Semantics

$$
\frac{b \sigma=\text { False }}{\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma\rangle \longrightarrow \sigma}
$$

Structural Operational Semantics

$$
\frac{b \sigma=\text { False }}{\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma\rangle \longrightarrow \sigma}
$$

$b \sigma=$ True
\langle WHILE b DO c OD, $\sigma\rangle \longrightarrow$

Structural Operational Semantics

$$
\frac{b \sigma=\text { False }}{\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma\rangle \longrightarrow \sigma}
$$

$$
\frac{b \sigma=\text { True } \quad\langle c, \sigma\rangle \longrightarrow \sigma^{\prime}}{\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma\rangle \longrightarrow}
$$

Structural Operational Semantics

$\frac{b \sigma=\text { False }}{\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma\rangle \longrightarrow \sigma}$

$$
\frac{b \sigma=\text { True }\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \quad\left\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma^{\prime}\right\rangle \longrightarrow \sigma^{\prime \prime}}{\langle\text { WHILE } b \text { DO } c \text { OD }, \sigma\rangle \longrightarrow \sigma^{\prime \prime}}
$$

Demo: The Definitions in Isabelle

Proofs about Programs

Now we know:

\rightarrow What programs are: Syntax
\rightarrow On what they work: State
\rightarrow How they work: Semantics

Proofs about Programs

Now we know:

\rightarrow What programs are: Syntax
\rightarrow On what they work: State
\rightarrow How they work: Semantics

So we can prove properties about programs

Proofs about Programs

Now we know:

\rightarrow What programs are: Syntax
\rightarrow On what they work: State
\rightarrow How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from slide 6 implements the factorial.

$$
\begin{aligned}
& \text { lemma }\langle\text { factorial, } \sigma\rangle \longrightarrow \sigma^{\prime} \Longrightarrow \sigma^{\prime} B=\text { fac }(\sigma A) \\
& \text { (where } \quad \text { fac } 0=0, \quad \text { fac }(\text { Suc } n)=(\text { Suc } n) * \text { fac } n \text {) }
\end{aligned}
$$

Demo: Example Proof

TOO TEDIOUS

Induction needed for each loop

Too tedious

Induction needed for each loop

Is there something easier?

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

$\{$ True $\} \quad x:=2 \quad\{x=2\}$

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

$\{$ True $\} \quad x:=2 \quad\{x=2\}$
$\{y=2\} \quad x:=21 * y \quad\{x=42\}$

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

\{True\} $\quad x:=2 \quad\{x=2\}$
$\{y=2\} \quad x:=21 * y \quad\{x=42\}$
$\{x=n\} \quad$ IF $y<0$ THEN $x:=x+y$ ELSE $x:=x-y \quad\{x=n-|y|\}$

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

\{True\} $\quad x:=2 \quad\{x=2\}$
$\{y=2\} \quad x:=21 * y \quad\{x=42\}$
$\{x=n\} \quad$ IF $y<0$ THEN $x:=x+y$ ELSE $x:=x-y \quad\{x=n-|y|\}$
$\{A=n\} \quad$ factorial $\quad\{B=$ fac $n\}$

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

$\{$ True $\} \quad x:=2 \quad\{x=2\}$
$\{y=2\} \quad x:=21 * y \quad\{x=42\}$
$\{x=n\} \quad$ IF $y<0$ THEN $x:=x+y$ ELSE $x:=x-y \quad\{x=n-|y|\}$
$\{A=n\} \quad$ factorial $\quad\{B=$ fac $n\}$

Proofs: have rules that directly work on such triples

Meaning of a Hoare-Triple

$$
\{P\} \quad c \quad\{Q\}
$$

What are the assertions P and Q ?

Meaning of a Hoare-Triple

$$
\{P\} \quad c \quad\{Q\}
$$

What are the assertions P and Q ?

\rightarrow Here: again functions from state to bool
(shallow embedding of assertions)

Meaning of a Hoare-Triple

$$
\{P\} \quad c \quad\{Q\}
$$

What are the assertions P and Q ?

\rightarrow Here: again functions from state to bool
(shallow embedding of assertions)
\rightarrow Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\} c\{Q\}$ mean?

Meaning of a Hoare-Triple

$$
\{P\} \quad c \quad\{Q\}
$$

What are the assertions P and Q ?

\rightarrow Here: again functions from state to bool (shallow embedding of assertions)
\rightarrow Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\} c\{Q\}$ mean?

Partial Correctness:

$\vDash\{P\} c\{Q\} \equiv\left(\forall \sigma \sigma^{\prime} . P \sigma \wedge\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \Longrightarrow Q \sigma^{\prime}\right)$

Meaning of a Hoare-Triple

$$
\{P\} \quad c \quad\{Q\}
$$

What are the assertions P and Q ?

\rightarrow Here: again functions from state to bool (shallow embedding of assertions)
\rightarrow Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\} c\{Q\}$ mean?

Partial Correctness:

$\vDash\{P\} c\{Q\} \equiv\left(\forall \sigma \sigma^{\prime} . P \sigma \wedge\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \Longrightarrow Q \sigma^{\prime}\right)$
Total Correctness:

$$
\models\{P\} c\{Q\} \equiv\left(\forall \sigma . P \sigma \Longrightarrow \exists \sigma^{\prime} .\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \wedge Q \sigma^{\prime}\right)
$$

Meaning of a Hoare-Triple

$$
\{P\} \quad c \quad\{Q\}
$$

What are the assertions P and Q ?
\rightarrow Here: again functions from state to bool (shallow embedding of assertions)
\rightarrow Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\} c\{Q\}$ mean?

Partial Correctness:

$\vDash\{P\} c\{Q\} \equiv\left(\forall \sigma \sigma^{\prime} . P \sigma \wedge\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \Longrightarrow Q \sigma^{\prime}\right)$
Total Correctness:
$\vDash\{P\} c\{Q\} \equiv\left(\forall \sigma . P \sigma \Longrightarrow \exists \sigma^{\prime} .\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \wedge Q \sigma^{\prime}\right)$
This lecture: partial correctness only (easier)

Hoare Rules

$\{P\}$ SKIP $\{P\}$

Hoare Rules

$$
\overline{\{P\}} \quad \text { SKIP } \quad\{P\} \quad \overline{\{P[x \mapsto e]\}} \quad x:=e \quad\{P\}
$$

Hoare Rules

$$
\begin{gathered}
\overline{\{P\} \quad \text { SKIP } \quad\{P\}} \quad \overline{\{P[x \mapsto e]\} \quad x:=e \quad\{P\}} \\
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2}\{Q\}}
\end{gathered}
$$

Hoare Rules

$$
\begin{gathered}
\overline{\{P\} \quad \operatorname{SKIP} \quad\{P\}} \quad \overline{\{P[x \mapsto e]\} \quad x:=e} \quad\{P\} \\
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2}\{Q\}}
\end{gathered}
$$

$$
\overline{\{P\}} \quad \text { IF } b \text { THEN } c_{1} \text { ELSE } c_{2} \quad\{Q\}
$$

Hoare Rules

$$
\begin{gathered}
\overline{\{P\}} \operatorname{SKIP} \quad\{P\} \quad \overline{\{P[x \mapsto e]\} \quad x:=e \quad\{P\}} \\
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\}}{\{P\} \quad \text { IF } b \text { THEN } c_{1} \text { ELSE } c_{2} \quad\{Q\}}
\end{gathered}
$$

Hoare Rules

$\begin{array}{lll}\overline{\{P\}} \quad \operatorname{SKIP} \quad\{P\} & \overline{\{P[x \mapsto e]\}} \quad x:=e \quad\{P\}\end{array}$

$$
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2}\{Q\}}
$$

$$
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \quad \text { IF } b \text { THEN } c_{1} \operatorname{ELSE} c_{2}}
$$

Hoare Rules

$$
\begin{gathered}
\hline\{P\} \quad \text { SKIP }\{P\} \quad \overline{\{P[x \mapsto e]\} \quad x:=e \quad\{P\}} \\
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { IF } b \text { THEN } c_{1} \text { ELSE } c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c\{P\} \quad P \wedge \neg b \Longrightarrow Q}{\{P\} \text { WHILE } b \text { DO } c \text { OD }\{Q\}}
\end{gathered}
$$

Hoare Rules

$$
\begin{gathered}
\hline\{P\} \quad \text { SKIP }\{P\} \quad \overline{\{P[x \mapsto e]\} \quad x:=e \quad\{P\}} \\
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { IF } b \text { THEN } c_{1} \text { ELSE } c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c\{P\} \quad P \wedge \neg b \Longrightarrow Q}{\{P\} \text { WHILE } b \text { DO } c \text { OD }\{Q\}}
\end{gathered}
$$

$\frac{\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\}}{\{P\} \quad c \quad\{Q\}}$

Hoare Rules

$\overline{\{P\}} \overline{\text { SKIP } \quad\{P\}} \quad \overline{\{P[x \mapsto e]\}} \quad x:=e \quad\{P\}$

$$
\begin{gathered}
\frac{\{P\} c_{1}\{R\} \quad\{R\} c_{2}\{Q\}}{\{P\} \quad c_{1} ; c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} \text { IF } b \text { THEN } c_{1} \text { ELSE } c_{2} \quad\{Q\}} \\
\frac{\{P \wedge b\} c\{P\} \quad P \wedge \neg b \Longrightarrow Q}{\{P\} \quad \text { WHILE } b \text { DO } c \text { OD }\{Q\}} \\
\frac{P \Longrightarrow P^{\prime} \quad\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\} \quad Q^{\prime} \Longrightarrow Q}{\{P\} \quad c \quad\{Q\}}
\end{gathered}
$$

Hoare Rules

$$
\begin{aligned}
& \overline{\vdash\{P\} \operatorname{SKIP} \quad\{P\}} \quad \overline{\vdash\{\lambda \sigma . P(\sigma(x:=e \sigma))\}} \quad x:=e \quad\{P\} \\
& \frac{\vdash\{P\} c_{1}\{R\} \quad \vdash\{R\} c_{2}\{Q\}}{\vdash\{P\} \quad c_{1} ; c_{2}\{Q\}} \\
& \frac{\vdash\{\lambda \sigma . P \sigma \wedge b \sigma\} c_{1}\{R\} \vdash\{\lambda \sigma . P \sigma \wedge \neg b \sigma\} c_{2}\{Q\}}{\vdash\{P\} \operatorname{IF} b \operatorname{THEN} c_{1} \operatorname{ELSE} c_{2}\{Q\}} \\
& \frac{\vdash\{\lambda \sigma . P \sigma \wedge b \sigma\} c\{P\} \wedge \sigma . P \sigma \wedge \neg b \sigma \Longrightarrow Q \sigma}{\vdash\{P\} \text { WHILE } b \mathrm{DO} c \text { OD }\{Q\}} \\
& \frac{\wedge \sigma . P \sigma \Longrightarrow P^{\prime} \sigma \vdash\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\} \quad \wedge \sigma . Q^{\prime} \sigma \Longrightarrow Q \sigma}{\vdash\{P\} \quad c\{Q\}}
\end{aligned}
$$

Are the Rules Correct?

Soundness: $\vdash\{P\} c\{Q\} \Longrightarrow \models\{P\} c\{Q\}$

Are the Rules Correct?

Soundness: $\vdash\{P\} c\{Q\} \Longrightarrow \models\{P\} c\{Q\}$

Proof: by rule induction on $\vdash\{P\} c\{Q\}$

Are the Rules Correct?

Soundness: $\vdash\{P\} c\{Q\} \Longrightarrow \models\{P\} c\{Q\}$

Proof: by rule induction on $\vdash\{P\} c\{Q\}$

Demo: Hoare Logic in Isabelle

Nicer, but still kind of tedious

Hoare rule application seems boring \& mechanical.

Automation?

Nicer, but still kind of tedious

Hoare rule application seems boring \& mechanical.

Automation?

Problem: While - need creativity to fi nd right (invariant) P

Nicer, but still kind of tedious

Hoare rule application seems boring \& mechanical.

Automation?

Problem: While - need creativity to fi nd right (invariant) P

Solution:
\rightarrow annotate program with invariants

Nicer, but still kind of tedious

Hoare rule application seems boring \& mechanical.

Automation?

Problem: While - need creativity to fi nd right (invariant) P

Solution:
\rightarrow annotate program with invariants
\rightarrow then, Hoare rules can be applied automatically

Nicer, but still kind of tedious

Hoare rule application seems boring \& mechanical.

Automation?

Problem: While - need creativity to fi nd right (invariant) P

Solution:

\rightarrow annotate program with invariants
\rightarrow then, Hoare rules can be applied automatically

Example:

$\{M=0 \wedge N=0\}$
WHILE $M \neq a$ INV $\{N=M * b\}$ DO $N:=N+b ; M:=M+1$ OD $\{N=a * b\}$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} c\{Q\}
$$

With annotated invariants, easy to get:

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} c\{Q\}
$$

With annotated invariants, easy to get: pre SKIP $Q=Q$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} c\{Q\}
$$

With annotated invariants, easy to get:

```
pre SKIP Q
pre (x:=a)Q
```

$$
\begin{aligned}
& =Q \\
& =\quad \lambda \sigma \cdot Q(\sigma(x:=a \sigma))
\end{aligned}
$$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} c\{Q\}
$$

With annotated invariants, easy to get:

```
pre SKIP Q
pre (x:=a)Q
pre (c, cc, ) Q
```

$$
\begin{aligned}
& =Q \\
& =\lambda \sigma \cdot Q(\sigma(x:=a \sigma)) \\
& =\operatorname{pre} c_{1}\left(\operatorname{pre} c_{2} Q\right)
\end{aligned}
$$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} c\{Q\}
$$

With annotated invariants, easy to get:

$$
\begin{array}{ll}
\text { pre SKIP } Q & =Q \\
\text { pre }(x:=a) Q & = \\
\text { pre }\left(c_{1} ; c_{2}\right) Q & =\operatorname{pre} c_{1}\left(\text { (pre } c_{2} Q\right) \\
\text { pre }\left(\operatorname{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}\right) Q & = \\
& \\
& \\
& \left(\neg b \longrightarrow \operatorname{pre} c_{1} Q \sigma\right) \wedge \\
& \\
& (\neg \longrightarrow)
\end{array}
$$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} c\{Q\}
$$

With annotated invariants, easy to get:

$$
\begin{array}{ll}
\text { pre SKIP } Q & =Q \\
\text { pre }(x:=a) Q & = \\
\text { pre }\left(c_{1} ; c_{2}\right) Q & \\
\text { pre }\left(\mathrm{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}\right) Q & =\operatorname{pre} c_{1}(\sigma(x:=a \sigma)) \\
& \\
& \lambda \sigma .\left(b \longrightarrow \operatorname{pre} c_{2} Q\right) \\
\text { pre }(\text { WHILE } b \text { INV } I \text { DO } c \text { OD }) Q & =I
\end{array}
$$

Verification Conditions

\{pre $c Q\} c\{Q\}$ only true under certain conditions

Verification Conditions

$\{$ pre $c Q\} c\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP $Q=$ True

Verification Conditions

\{pre $c Q\} c\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
$=$ True
$=$ True

Verification Conditions

$\{$ pre $c Q\} c\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
vc $\left(c_{1} ; c_{2}\right) Q$
$=$ True
$=$ True
$=\operatorname{vc} c_{2} Q \wedge\left(\operatorname{vc} c_{1}\left(\operatorname{pre} c_{2} Q\right)\right)$

Verification Conditions

\{pre $c Q\} c\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
vc $\left(c_{1} ; c_{2}\right) Q$
$\mathrm{vc}\left(\operatorname{IF} b\right.$ THEN $\left.c_{1} \operatorname{ELSE} c_{2}\right) Q=\operatorname{vc} c_{1} Q \wedge \operatorname{vc} c_{2} Q$

Verification Conditions

\{pre $c Q\} c\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
$\operatorname{vc}\left(c_{1} ; c_{2}\right) Q \quad=\quad \operatorname{vc} c_{2} Q \wedge\left(\operatorname{vc} c_{1}\left(\operatorname{pre} c_{2} Q\right)\right)$
$\mathrm{vc}\left(\mathrm{IF} b\right.$ THEN $\left.c_{1} \operatorname{ELSE} c_{2}\right) Q=\quad \operatorname{vc} c_{1} Q \wedge \operatorname{vc} c_{2} Q$ $\mathrm{vc}($ WHILE b INV I DO c OD) $Q=(\forall \sigma . I \sigma \wedge b \sigma \longrightarrow \operatorname{pre} c I \sigma) \wedge$
$(\forall \sigma . I \sigma \wedge \neg b \sigma \longrightarrow Q \sigma) \wedge$
$\mathrm{vc} c I$

Verification Conditions

\{pre $c Q\} c\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
vc $\left(c_{1} ; c_{2}\right) Q \quad=\quad \operatorname{vc} c_{2} Q \wedge\left(\operatorname{vc} c_{1}\left(\operatorname{pre} c_{2} Q\right)\right)$
$\mathrm{vc}\left(\mathrm{IF} b\right.$ THEN $\left.c_{1} \operatorname{ELSE} c_{2}\right) Q=\quad \operatorname{vc} c_{1} Q \wedge \operatorname{vc} c_{2} Q$ $\mathrm{vc}($ WHILE b INV I DO c OD $) Q=(\forall \sigma . I \sigma \wedge b \sigma \longrightarrow \operatorname{pre} c I \sigma) \wedge$
$(\forall \sigma . I \sigma \wedge \neg b \sigma \longrightarrow Q \sigma) \wedge$
$\mathrm{vc} c I$

$$
\operatorname{vc} c Q \wedge(\operatorname{pre} c Q \Longrightarrow P) \Longrightarrow\{P\} c\{Q\}
$$

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

\rightarrow declare program variables with each Hoare triple

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

\rightarrow declare program variables with each Hoare triple

- nice, usual syntax
- works well if you state full program and only use vcg

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

\rightarrow declare program variables with each Hoare triple

- nice, usual syntax
- works well if you state full program and only use vcg
\rightarrow separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

\rightarrow declare program variables with each Hoare triple

- nice, usual syntax
- works well if you state full program and only use vcg
\rightarrow separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically
- more syntactic overhead
- program pieces compose nicely

Records in Isabelle

Records are a tuples with named components

Records in Isabelle

Records are a tuples with named components

Example:

$$
\begin{aligned}
\text { record } A= & a:: \text { nat } \\
& b:: \text { int }
\end{aligned}
$$

Records in Isabelle

Records are a tuples with named components

Example:

$$
\begin{aligned}
\operatorname{record} A= & a:: \text { nat } \\
& b:: \text { int }
\end{aligned}
$$

\rightarrow Selectors: $\quad \mathrm{a}:: \mathrm{A} \Rightarrow$ nat, $\quad \mathrm{b}:: \mathrm{A} \Rightarrow \mathrm{int}, \quad \mathrm{a} r=\operatorname{Suc} 0$

Records in Isabelle

Records are a tuples with named components

Example:

$$
\begin{aligned}
\operatorname{record} A= & a:: \text { nat } \\
& b:: \text { int }
\end{aligned}
$$

\rightarrow Selectors: a $:: \mathrm{A} \Rightarrow$ nat, $\mathrm{b}:: \mathrm{A} \Rightarrow$ int, $\mathrm{a} r=\operatorname{Suc} 0$
\rightarrow Constructors: ($\mathrm{a}=\operatorname{Suc} 0, \mathrm{~b}=-1$)

Records in Isabelle

Records are a tuples with named components

Example:

$$
\begin{aligned}
\operatorname{record} A= & a:: \text { nat } \\
& b:: \text { int }
\end{aligned}
$$

\rightarrow Selectors: a $:: \mathrm{A} \Rightarrow$ nat, $\quad \mathrm{b}:: \mathrm{A} \Rightarrow$ int, $\quad \mathrm{a} r=$ Suc 0
\rightarrow Constructors: ($\mathrm{a}=$ Suc $0, \mathrm{~b}=-1$)
\rightarrow Update: $\quad r(\operatorname{a}:=$ Suc 0$)$

Records in Isabelle

Records are a tuples with named components

Example:

$$
\begin{aligned}
\operatorname{record} A= & a:: \text { nat } \\
& b:: \text { int }
\end{aligned}
$$

\rightarrow Selectors: a $:: \mathrm{A} \Rightarrow$ nat, $\quad \mathrm{b}:: \mathrm{A} \Rightarrow$ int, $\quad \mathrm{a} r=\operatorname{Suc} 0$
\rightarrow Constructors: ($\mathrm{a}=$ Suc $0, \mathrm{~b}=-1$)
\rightarrow Update: $\quad r(\operatorname{a}:=$ Suc 0$)$

Records are extensible:

$$
\begin{gathered}
\text { record } B=A+ \\
c:: \text { nat list }
\end{gathered}
$$

Records in Isabelle

Records are a tuples with named components
Example:

$$
\begin{aligned}
\text { record } A= & a:: \text { nat } \\
& b:: \text { int }
\end{aligned}
$$

\rightarrow Selectors: a $:: \mathrm{A} \Rightarrow$ nat, $\quad \mathrm{b}:: \mathrm{A} \Rightarrow$ int, $\quad \mathrm{a} r=\operatorname{Suc} 0$
\rightarrow Constructors: ($\mathrm{a}=$ Suc $0, \mathrm{~b}=-1$)
\rightarrow Update: $\quad r(\mid a:=$ Suc 0$)$

Records are extensible:

$$
\begin{gathered}
\text { record } B=A+ \\
c:: \text { nat list } \\
(a=\operatorname{Suc} 0, b=-1, c=[0,0])
\end{gathered}
$$

Demo

More

Available now in Isablle:

\rightarrow procedures

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion
\rightarrow exceptions

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion
\rightarrow exceptions
\rightarrow arrays

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion
\rightarrow exceptions
\rightarrow arrays
\rightarrow pointers

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion
\rightarrow exceptions
\rightarrow arrays
\rightarrow pointers

We're working at:
\rightarrow nondeterminsm

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion
\rightarrow exceptions
\rightarrow arrays
\rightarrow pointers

We're working at:
\rightarrow nondeterminsm
\rightarrow probability

More

Available now in Isablle:

\rightarrow procedures
\rightarrow with blocks and local variables
\rightarrow and (mutual) recursion
\rightarrow exceptions
\rightarrow arrays
\rightarrow pointers

We're working at:

\rightarrow nondeterminsm
\rightarrow probability
\rightarrow object orientation

We have seen today ...

\rightarrow Syntax and semantics of IMP
\rightarrow Hoare logic rules
\rightarrow Soundness of Hoare logic
\rightarrow Verification conditions
\rightarrow Example program proofs

Exercises

\rightarrow Write a program in IMP that calculates quotient and reminder of $x \in \mathbb{N}$ and $y \in \mathbb{N}$
\rightarrow Find the right invariant for its while loop.
\rightarrow Show its correctness in Isabelle: $\vdash\{$ True $\}$ program $\left\{{ }^{\prime} Q * y+{ }^{\prime} R=x \wedge^{\prime} R<y\right\}$
\rightarrow Write an IMP program that sorts arrays (lists) by insertion sort.
\rightarrow Formulate and show its correctness in Isabelle.

