LAST TIME

NICTA Advanced Course

Slide 1

Theorem Proving Principles, Techniques, Applications

$\{P\}\ldots\{Q\}$

- → Recdef→ More induction
- → Well founded orders
- Slide 3 → Well founded recursion
 - → Calculations: also/finally
 - → [trans]-rules

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus

• Term rewriting

• Higher Order Logic, natural deduction

Slide 2

→ Proof & Specification Techniques

- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

Slide 4 A CRASH COURSE IN SEMANTICS

LAST TIME

IMP - A SMALL IMPERATIVE LANGUAGE

Commands:

	datatype com	=	SKIP	
			Assign loc aexp	(_ := _)
			Semi com com	(_; _)
Slida E			Cond bexp com com	(IF _ THEN _ ELSE _)
Silue 5			While bexp com	(WHILE _ DO _ OD)
	types loc	=	string	
	types state	=	$loc \Rightarrow nat$	
	types aexp	=	state \Rightarrow nat	
	types bexp	=	$\text{state} \Rightarrow \text{bool}$	

EXAMPLE PROGRAM

Usual syntax:

B := 1;WHILE $A \neq 0$ DO B := B * A;A := A - 1OD

Slide 6

Expressions are functions from state to bool or nat:

 $B := (\lambda \sigma. 1);$ WHILE $(\lambda \sigma. \sigma A \neq 0)$ DO $B := (\lambda \sigma. \sigma B * \sigma A);$ $A := (\lambda \sigma. \sigma A - 1)$ OD

WHAT DOES IT DO?

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs Slide 7

How to define execution of a program?

- → A wide field of its own (visit a semantics course!)
- → Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (programs as functions on states, state transformers)
 - Axiomatic (pre-/post conditions, Hoare logic)

STRUCTURAL OPERATIONAL SEMANTICS

$$\label{eq:skipped} \begin{array}{c} \overline{\langle \mathsf{SKIP}, \sigma \rangle \longrightarrow \sigma} \\ \\ \hline \\ e \ \sigma = v \\ \overline{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma[x \mapsto v]} \end{array}$$

Slide 8

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma'}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c_1, \sigma \rangle \longrightarrow \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \longrightarrow \sigma'}$$

$$\frac{b \ \sigma = \mathsf{False} \quad \langle c_2, \sigma \rangle \longrightarrow \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \longrightarrow \sigma'}$$

STRUCTURAL OPERATIONAL SEMANTICS

 $\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \longrightarrow \sigma}$

PROOFS ABOUT PROGRAMS

Now we know:

- ➔ What programs are: Syntax
- ➔ On what they work: State
- ➔ How they work: Semantics

Slide 11 So we can prove properties about programs

Example:

Show that example program from slide 6 implements the factorial.

lemma $\langle \text{factorial}, \sigma \rangle \longrightarrow \sigma' \Longrightarrow \sigma' B = \text{fac} (\sigma A)$

(where fac 0 = 0, fac (Suc n) = (Suc n) * fac n)

Slide 10 DEMO: THE DEFINITIONS IN ISABELLE

Slide 12

DEMO: EXAMPLE PROOF

PROOFS ABOUT PROGRAMS

MEANING OF A HOARE-TRIPLE

Too tedious

Induction needed for each loop

Slide 13

Is there something easier?

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:

{True} x := 2 {x = 2} Slide 14

 $\{y=2\}$ x := 21 * y $\{x=42\}$

 $\{x = n\}$ IF y < 0 THEN x := x + y ELSE x := x - y $\{x = n - |y|\}$

 $\{A = n\}$ factorial $\{B = fac n\}$

Proofs: have rules that directly work on such triples

MEANING OF A HOARE-TRIPLE

 $\{P\}$ c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

Slide 15

Slide 16

What does $\{P\} \ c \ \{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \longrightarrow \sigma' \Longrightarrow Q \ \sigma')$$

Total Correctness:

 $\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma. \ P \ \sigma \Longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \longrightarrow \sigma' \land Q \ \sigma')$

This lecture: partial correctness only (easier)

HOARE RULES

7

	HOARE RULES					
	$\vdash \{P\} SKIP \{P\} \vdash \{\lambda\sigma. \ P \ (\sigma(x := e \ \sigma))\} x := e \{P\}$					
	$\frac{\vdash \{P\} c_1 \{R\} \vdash \{R\} c_2 \{Q\}}{\vdash \{P\} c_1; c_2 \{Q\}}$					
Slide 17	$\frac{\vdash \{\lambda \sigma. \ P \ \sigma \land b \ \sigma\} \ c_1 \ \{R\} \vdash \{\lambda \sigma. \ P \ \sigma \land \neg b \ \sigma\} \ c_2 \ \{Q\}}{\vdash \{P\} IF \ b \ THEN \ c_1 \ ELSE \ c_2 \{Q\}}$					
	$\frac{\vdash \{\lambda \sigma. \ P \ \sigma \land b \ \sigma\} \ c \ \{P\} \bigwedge \sigma. \ P \ \sigma \land \neg b \ \sigma \Longrightarrow Q \ \sigma}{\vdash \{P\} WHILE \ b \ DO \ c \ OD \{Q\}}$					
	$\frac{\bigwedge \sigma. P \ \sigma \Longrightarrow P' \ \sigma \ \vdash \{P'\} \ c \ \{Q'\} \ \bigwedge \sigma. Q' \ \sigma \Longrightarrow Q\sigma}{\vdash \{P\} \ c \ \{Q\}}$					

ARE THE RULES CORRECT?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\} \ c \ \{Q\}$

Slide 18

Demo: Hoare Logic in Isabelle

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Slide 19 Solution:

- → annotate program with invariants
- → then, Hoare rules can be applied automatically

Example:

$$\begin{split} &\{M=0 \wedge N=0\} \\ & \mathsf{WHILE} \ M \neq a \ \mathsf{INV} \ \{N=M*b\} \ \mathsf{DO} \ N:=N+b; \\ &M:=M+1 \ \mathsf{OD} \ \{N=a*b\} \end{split}$$

WEAKEST PRECONDITIONS

pre c Q = weakest P such that $\{P\} c \{Q\}$

With annotated invariants, easy to get:

		-	
	pre SKIP Q	=	Q
Slide 20	pre $(x := a) Q$	=	$\lambda\sigma.\;Q(\sigma(x:=a\sigma))$
	pre $(c_1; c_2) Q$	=	pre c_1 (pre $c_2 Q$)
	pre (IF b THEN c_1 ELSE c_2) Q	=	$\lambda \sigma. (b \longrightarrow \operatorname{pre} c_1 Q \sigma) \land$
			$(\neg b \longrightarrow pre \ c_2 \ Q \ \sigma)$
	pre (WHILE b INV I DO c OD) Q	=	Ι

NICER, BUT STILL KIND OF TEDIOUS

VERIFICATION CONDITIONS

 $\{ pre \ c \ Q \} \ c \ \{Q\}$ only true under certain conditions

 $\begin{array}{rcl} \mbox{These are called verification conditions vc c Q:} \\ vc SKIP Q = True \\ vc ($x:=a$) Q = True \\ \mbox{Slide 21} & vc ($c_1;$c_2$) Q = vc c_2 Q $\land (vc c_1 (pre c_2 Q)) \\ vc (IF b THEN c_1 ELSE c_2) Q = vc c_1 Q $\land vc c_2 Q \\ vc (WHILE b INV I DO c OD) Q = ($\forall σ. $I\sigma $\land b\sigma $\longrightarrow pre c I σ) $\land $($\forall σ. $I\sigma $\land \neg b\sigma $\longrightarrow Q σ) $\land $vc c I \\ \end{array}$

$$\mathsf{vc} \ c \ Q \land (\mathsf{pre} \ c \ Q \Longrightarrow P) \Longrightarrow \{P\} \ c \ \{Q\}$$

SYNTAX TRICKS

- → $x := \lambda \sigma$. 1 instead of x := 1 sucks
- → $\{\lambda\sigma. \sigma x = n\}$ instead of $\{x = n\}$ sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Slide 22 Choices:

- ➔ declare program variables with each Hoare triple
 - · nice, usual syntax
 - works well if you state full program and only use vcg
- → separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically
 - more syntactic overhead
 - program pieces compose nicely

RECORDS IN ISABELLE

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat

b :: int

→ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a
$$r = Suc 0$$

→ Constructors: (| a = Suc 0, b = -1)

→ Update: $r(| a := Suc 0)$

Records are extensible:

record B = A + c :: nat list

(| a = Suc 0, b = -1, c = [0, 0])

Slide 24

DЕМО

More

Available now in Isablle:

- → procedures
- ➔ with blocks and local variables
- → and (mutual) recursion
- → exceptions

Slide 25 → arrays

→ pointers

We're working at:

- ➔ nondeterminsm
- → probability
- → object orientation

Slide 27

Exercises

- \twoheadrightarrow Write a program in IMP that calculates quotient and reminder of $x\in\mathbb{N}$ and $y\in\mathbb{N}$
- → Find the right invariant for its while loop.
- → Show its correctness in Isabelle: \vdash {True} program { $Q * y + R = x \land R < y$ }
 - → Write an IMP program that sorts arrays (lists) by insertion sort.
 - → Formulate and show its correctness in Isabelle.

WE HAVE SEEN TODAY ...

- → Syntax and semantics of IMP
- → Hoare logic rules
- → Soundness of Hoare logic
- - → Example program proofs