

NICTA Advanced Course
Theorem Proving
Principles, Techniques, Applications

Content

\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Datatypes, recursion, induction
- Inductively defined sets, rule induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs

λ CALCULUS IS INCONSISTENT

From last lecture:
Can find term R such that $R R=\beta \operatorname{not}(R R)$

There are more terms that do not make sense:

$$
12 \text {, true false, etc. }
$$

λ CALCULUS IS INCONSISTENT

From last lecture:
Can fi nd term R such that $R R=\beta \operatorname{not}(R R)$

There are more terms that do not make sense:

$$
12 \text {, true false, etc. }
$$

Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

\rightarrow for term t has type α write $t:: \alpha$

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

\rightarrow for term t has type α write $t:: \alpha$
\rightarrow if x has type α then λx. x is a function from α to α Write: $(\lambda x . x):: \alpha \Rightarrow a$

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

\rightarrow for term t has type α write $t:: \alpha$
\rightarrow if x has type α then λx. x is a function from α to α
Write: $(\lambda x . x):: \alpha \Rightarrow a$
\rightarrow for $s t$ to be sensible:
s must be function
t must be right type for parameter
If $s:: \alpha \Rightarrow \beta$ and $t:: \alpha$ then $(s t):: \beta$

That's about it

Now formally, again

SyNTAX FOR $\lambda \rightarrow$

Terms: $t::=v|c|(t t) \mid(\lambda x . t)$ $v, x \in V, \quad c \in C, \quad V, C$ sets of names

Types: $\tau::=\mathrm{b}|\nu| \tau \Rightarrow \tau$ $\mathrm{b} \in\{$ bool, int,$\ldots\}$ base types $\nu \in\{\alpha, \beta, \ldots\}$ type variables

$$
\alpha \Rightarrow \beta \Rightarrow \gamma \quad=\quad \alpha \Rightarrow(\beta \Rightarrow \gamma)
$$

SyNTAX FOR $\lambda \rightarrow$

Terms: $t::=v|c|(t t) \mid(\lambda x . t)$ $v, x \in V, \quad c \in C, \quad V, C$ sets of names

Types: $\tau::=\mathrm{b}|\nu| \tau \Rightarrow \tau$
$\mathrm{b} \in\{$ bool, int,$\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables

$$
\alpha \Rightarrow \beta \Rightarrow \gamma \quad=\quad \alpha \Rightarrow(\beta \Rightarrow \gamma)
$$

Contexts Γ :

Γ : function from variable and constant names to types.

SyNTAX FOR $\lambda \rightarrow$

Terms: $t::=v|c|(t t) \mid(\lambda x . t)$ $v, x \in V, \quad c \in C, \quad V, C$ sets of names

Types: $\tau::=\mathrm{b}|\nu| \tau \Rightarrow \tau$

$$
\mathrm{b} \in\{\text { bool, int, } \ldots\} \text { base types }
$$

$$
\nu \in\{\alpha, \beta, \ldots\} \text { type variables }
$$

$$
\alpha \Rightarrow \beta \Rightarrow \gamma \quad=\quad \alpha \Rightarrow(\beta \Rightarrow \gamma)
$$

Contexts Γ :

Γ : function from variable and constant names to types.

Term t has type τ in context $\Gamma: \quad \Gamma \vdash t:: \tau$

ExAMPLES

$$
\Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha
$$

ExAMPLES

$$
\begin{aligned}
& \Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha \\
& {[y \leftarrow \text { int }] \vdash y:: \text { int }}
\end{aligned}
$$

ExAMPLES

$$
\begin{aligned}
& \Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha \\
& {[y \leftarrow \text { int }] \vdash y:: \text { int }} \\
& {[z \leftarrow \text { bool }] \vdash(\lambda y . y) z:: \text { bool }}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha \\
& {[y \leftarrow \text { int }] \vdash y:: \text { int }} \\
& {[z \leftarrow \text { bool }] \vdash(\lambda y . y) z:: \text { bool }} \\
& {[] \vdash \lambda f x . f x::(\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
\end{aligned}
$$

ExAMPLES

$$
\begin{aligned}
& \Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha \\
& {[y \leftarrow \text { int }] \vdash y:: \text { int }} \\
& {[z \leftarrow \text { bool }] \vdash(\lambda y . y) z:: \text { bool }} \\
& {[] \vdash \lambda f x . f x::(\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
\end{aligned}
$$

A term t is well typed or type correct if there are Γ and τ such that $\Gamma \vdash t:: \tau$

Type Checking Rules

Variables:
$\overline{\Gamma \vdash x:: \Gamma(x)}$

Type Checking Rules

Variables:

$$
\overline{\Gamma \vdash x:: \Gamma(x)}
$$

Application:
$\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{1}$

Type Checking Rules

Variables:
$\overline{\Gamma \vdash x:: \Gamma(x)}$

Application: $\quad \frac{\Gamma \vdash t_{1}:: \tau_{2} \Rightarrow \tau_{1} \quad \Gamma \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{1}}$

Type Checking Rules

Variables:

$$
\overline{\Gamma \vdash x:: \Gamma(x)}
$$

Application: $\quad \frac{\Gamma \vdash t_{1}:: \tau_{2} \Rightarrow \tau_{1} \quad \Gamma \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{1}}$

Abstraction:

$$
\overline{\Gamma \vdash(\lambda x . t):: \tau_{1} \Rightarrow \tau_{2}}
$$

Type Checking Rules

Variables:

$$
\overline{\Gamma \vdash x:: \Gamma(x)}
$$

Application: $\quad \frac{\Gamma \vdash t_{1}:: \tau_{2} \Rightarrow \tau_{1} \quad \Gamma \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{1}}$
Abstraction: $\quad \frac{\Gamma\left[x \leftarrow \tau_{1}\right] \vdash t:: \tau_{2}}{\Gamma \vdash(\lambda x . t):: \tau_{1} \Rightarrow \tau_{2}}$

Example Type Derivation:

$$
[] \vdash \lambda x y \cdot x:: \alpha \Rightarrow \beta \Rightarrow \alpha
$$

Example Type Derivation:

$$
\frac{[x \leftarrow \alpha] \vdash \lambda y . x:: \beta \Rightarrow \alpha}{[] \vdash \lambda x y . x:: \alpha \Rightarrow \beta \Rightarrow \alpha}
$$

Example Type Derivation:

$$
\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x:: \alpha}{[x \leftarrow \alpha] \vdash \lambda y \cdot x:: \beta \Rightarrow \alpha}
$$

Example Type Derivation:

$$
\frac{\overline{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x:: \alpha}}{[x \leftarrow \alpha] \vdash \lambda y . x:: \beta \Rightarrow \alpha}
$$

More complex Example

$$
\overline{[] \vdash \lambda f x . f x x::}
$$

More complex Example

$$
\overline{[] \vdash \lambda f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
$$

More complex Example

$$
\frac{\overline{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x . f x x:: \alpha \Rightarrow \beta}}{[] \vdash \lambda f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
$$

More complex Example

$$
\frac{\Gamma \vdash f x x:: \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x . f x x:: \alpha \Rightarrow \beta}
$$

$$
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
$$

More complex Example

$$
\frac{\frac{\Gamma \vdash f x:: \alpha \Rightarrow \beta}{\Gamma \vdash f x x:: \beta}}{\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x . f x x:: \alpha \Rightarrow \beta}{[] \vdash \lambda f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}}
$$

$$
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
$$

More complex Example

$$
\frac{\frac{\Gamma \vdash f x:: \alpha \Rightarrow \beta}{\overline{\Gamma \vdash f x x:: \beta}} \overline{\overline{\Gamma \vdash x: \alpha}}}{\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x . f x x:: \alpha \Rightarrow \beta}{[] \vdash \lambda f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}}
$$

$$
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
$$

More complex Example

$$
\begin{aligned}
\hline \overline{\Gamma \vdash f:: \alpha \Rightarrow(\alpha \Rightarrow \beta)} & \frac{\Gamma \vdash f x:: \alpha \Rightarrow \beta}{\Gamma \vdash x:: \alpha} \\
& \frac{\overline{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x . f x x:: \alpha \Rightarrow \beta}}{[] \vdash \lambda f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
\end{aligned}
$$

$$
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
$$

More complex Example

$$
\begin{gathered}
\frac{\overline{\Gamma \vdash f:: \alpha \Rightarrow(\alpha \Rightarrow \beta)} \overline{\Gamma \vdash x:: \alpha}}{\frac{\Gamma \vdash f x:: \alpha \Rightarrow \beta}{\Gamma \vdash x:: \alpha}} \overline{\overline{\Gamma \vdash x x:: \beta}} \\
\frac{\overline{[f \vdash \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x . f x x:: \alpha \Rightarrow \beta}}{[] \vdash f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} \\
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
\end{gathered}
$$

More general Types

A term can have more than one type.

More general Types

A term can have more than one type.

Example: [] $\vdash \lambda x . x::$ bool \Rightarrow bool
[] $\vdash \lambda x . x:: \alpha \Rightarrow \alpha$

More general Types

A term can have more than one type.

Example: [] $\vdash \lambda x . x::$ bool \Rightarrow bool

$$
[] \vdash \lambda x . x:: \alpha \Rightarrow \alpha
$$

Some types are more general than others:
$\tau \lesssim \sigma$ if there is a substitution S such that $\tau=S(\sigma)$

More general Types

A term can have more than one type.

Example: [] $\vdash \lambda x . x::$ bool \Rightarrow bool

$$
[] \vdash \lambda x . x:: \alpha \Rightarrow \alpha
$$

Some types are more general than others:
$\tau \lesssim \sigma$ if there is a substitution S such that $\tau=S(\sigma)$

Examples:

$$
\text { int } \Rightarrow \mathrm{bool} \lesssim \alpha \Rightarrow \beta
$$

More general Types

A term can have more than one type.

Example: [] $\vdash \lambda x . x::$ bool \Rightarrow bool

$$
[] \vdash \lambda x . x:: \alpha \Rightarrow \alpha
$$

Some types are more general than others:
$\tau \lesssim \sigma$ if there is a substitution S such that $\tau=S(\sigma)$

Examples:

$$
\text { int } \Rightarrow \text { bool } \lesssim \alpha \Rightarrow \beta \lesssim \beta \Rightarrow \alpha
$$

More general Types

A term can have more than one type.

Example: [] $\vdash \lambda x . x::$ bool \Rightarrow bool

$$
[] \vdash \lambda x . x:: \alpha \Rightarrow \alpha
$$

Some types are more general than others:
$\tau \lesssim \sigma$ if there is a substitution S such that $\tau=S(\sigma)$

Examples:

$$
\text { int } \Rightarrow \mathrm{bool} \lesssim \alpha \Rightarrow \beta \lesssim \beta \Rightarrow \alpha \quad \mathbb{Z} \quad \alpha \Rightarrow \alpha
$$

Most general Types

Fact: each type correct term has a most general type

Most general Types

Fact: each type correct term has a most general type
Formally:

$$
\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)
$$

Most general Types

Fact: each type correct term has a most general type
Formally:
$\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)$
It can be found by executing the typing rules backwards.

Most general Types

Fact: each type correct term has a most general type
Formally:
$\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)$
It can be found by executing the typing rules backwards.
\rightarrow type checking: checking if $\Gamma \vdash t:: \tau$ for given Γ and τ

Most general Types

Fact: each type correct term has a most general type
Formally:
$\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)$
It can be found by executing the typing rules backwards.
\rightarrow type checking: checking if $\Gamma \vdash t:: \tau$ for given Γ and τ
\rightarrow type inference: computing Γ and τ such that $\Gamma \vdash t:: \tau$

Most general Types

Fact: each type correct term has a most general type
Formally:
$\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)$
It can be found by executing the typing rules backwards.
\rightarrow type checking: checking if $\Gamma \vdash t:: \tau$ for given Γ and τ
\rightarrow type inference: computing Γ and τ such that $\Gamma \vdash t:: \tau$

Type checking and type inference on $\lambda \rightarrow$ are decidable.

What about β REDUCTION?

What about β reduction?

Definition of β reduction stays the same.

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\quad \Gamma \vdash s:: \tau \wedge s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t:: \tau$

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\quad \Gamma \vdash s:: \tau \wedge s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t:: \tau$

This property is called subject reduction

What about termination?

What about termination?

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

What about termination?

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

$\rightarrow={ }_{\beta}$ is decidable
To decide if $s={ }_{\beta} t$, reduce s and t to normal form (always exists, because $\longrightarrow \beta$ terminates), and compare result.

What about termination?

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)
$\rightarrow={ }_{\beta}$ is decidable
To decide if $s={ }_{\beta} t$, reduce s and t to normal form (always exists, because $\longrightarrow \beta$ terminates), and compare result.
$\rightarrow={ }_{\alpha \beta \eta}$ is decidable
This is why Isabelle can automatically reduce
each term to $\beta \eta$ normal form.

What does this mean for Expressiveness?

What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \rightarrow$!

What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \rightarrow$!
How can typed functional languages then be turing complete?

What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \rightarrow$!

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct
$\lambda \rightarrow$ term using $Y::(\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t(Y t)$ as only constant.

What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \rightarrow$!

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct
$\lambda \rightarrow$ term using $Y::(\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t(Y t)$ as only constant.
$\rightarrow Y$ is called fix point operator
\rightarrow used for recursion

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}\left|{ }^{\prime} \nu\right|$ ' $\nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, ...\} type classes

Terms: $\quad t::=v|c| ? v|(t t)|(\lambda x . t)$
$v, x \in V, \quad c \in C, \quad V, C$ sets of names

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}\left|{ }^{\prime} \nu\right|$ ' $\nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{\mathrm{bool}$, int,$\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, ...\} type classes

Terms: $\quad t::=v|c| ? v|(t t)|(\lambda x . t)$
$v, x \in V, \quad c \in C, \quad V, C$ sets of names
\rightarrow type constructors: construct a new type out of a parameter type. Example: int list

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}|' \nu| ' \nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, ...\} type classes
Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

\rightarrow type constructors: construct a new type out of a parameter type. Example: int list
\rightarrow type classes: restrict type variables to a class defined by axioms. Example: α :: order

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}|' \nu| ' \nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int,$\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord,..$\}$ type classes
Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

\rightarrow type constructors: construct a new type out of a parameter type. Example: int list
\rightarrow type classes: restrict type variables to a class defined by axioms. Example: α :: order
\rightarrow schematic variables: variables that can be instantiated.

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties axclass order < ord
order_refl: " $x \leq x$ " order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord
order_refl: " $x \leq x$ " order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$
\rightarrow theorems can be proved in the abstract lemma order_less_trans: " $\wedge x$::'a :: order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order $<$ ord
order_refl: " $x \leq x$ "
order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$
\rightarrow theorems can be proved in the abstract
lemma order_less_trans: " $\wedge x$::'a :: order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
\rightarrow can be used for subtyping
axclass linorder < order
linorder_linear: " $x \leq y \vee y \leq x "$

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord
order_refl: " $x \leq x$ " order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$
\rightarrow theorems can be proved in the abstract
lemma order_less_trans: " $\wedge x$::'a :: order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
\rightarrow can be used for subtyping
axclass linorder $<$ order
linorder_linear: " $x \leq y \vee y \leq x "$
\rightarrow can be instantiated
instance nat :: "\{order, linorder\}" by ...

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

$$
\text { But: } \quad \text { lemma } " x+0=0+x "
$$

$\rightarrow x$ is free
\rightarrow convention: lemma must be true for all x
\rightarrow during the proof, x must not be instantiated

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

$$
\text { But: } \quad \text { lemma } " x+0=0+x "
$$

$\rightarrow x$ is free
\rightarrow convention: lemma must be true for all x
\rightarrow during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.
Only schematic variables can be instantiated.
Free converted into schematic after proof is fi nished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Examples:

$$
\begin{array}{lll}
? X \wedge ? Y & =\alpha_{\alpha \beta} & x \wedge x \\
? P x & =\alpha_{\alpha \beta \eta} & x \wedge x \\
P(? f x) & ={ }_{\alpha \beta \eta} & ? Y x
\end{array}
$$

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Examples:

$$
\begin{aligned}
& ? X \wedge ? Y \quad={ }_{\alpha \beta \eta} \quad x \wedge x \quad[? X \leftarrow x, ? Y \leftarrow x] \\
& ? P x \quad={ }_{\alpha \beta \eta} \quad x \wedge x \quad[? P \leftarrow \lambda x . x \wedge x] \\
& P(? f x)={ }_{\alpha \beta \eta} \quad ? Y x \quad[? f \leftarrow \lambda x, x, ? Y \leftarrow P]
\end{aligned}
$$

Higher Order: schematic variables can be functions.

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved
\rightarrow Important fragments (like Higher Order Patterns) are decidable

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved
\rightarrow Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

\rightarrow is a term in β normal form where
\rightarrow each occurrence of a schematic variable is of the from ?f $t_{1} \ldots t_{n}$
\rightarrow and the $t_{1} \ldots t_{n}$ are η-convertible into n distinct bound variables

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in $\lambda \rightarrow$ satisfies subject reduction

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in λ^{\rightarrow} satisfies subject reduction
$\rightarrow \beta$-reduction in λ^{\rightarrow} always terminates

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in $\lambda \rightarrow$ satisfies subject reduction
$\rightarrow \beta$-reduction in λ^{\rightarrow} always terminates
\rightarrow Types and terms in Isabelle

Preview: Proofs in Isabelle

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
done
```


Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
done
```

\rightarrow Sequential application of methods until all subgoals are solved.

The Proof State

1. $\wedge x_{1} \ldots x_{p} \cdot \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B$
2. $\wedge y_{1} \ldots y_{q} \cdot \llbracket C_{1} ; \ldots ; C_{m} \rrbracket \Longrightarrow D$

The Proof State

1. $\wedge x_{1} \ldots x_{p} . \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B$
2. $\wedge y_{1} \ldots y_{q} \cdot \llbracket C_{1} ; \ldots ; C_{m} \rrbracket \Longrightarrow D$
$x_{1} \ldots x_{p} \quad$ Parameters
$A_{1} \ldots A_{n} \quad$ Local assumptions
$B \quad$ Actual (sub)goal

Isabelle Theories

Syntax:

theory $M y T h=I m p T h_{1}+\ldots+\operatorname{ImpTh}_{n}$:
(declarations, defi nitions, theorems, proofs, ...)* end
\rightarrow MyTh: name of theory. Must live in file MyTh.thy
$\rightarrow \operatorname{ImpTh}_{i}$: name of imported theories. Import transitive.

Isabelle Theories

Syntax:

theory MyTh $=\operatorname{Imp} T h_{1}+\ldots+\operatorname{ImpTh}_{n}$:
(declarations, defi nitions, theorems, proofs, ...)* end
\rightarrow MyTh: name of theory. Must live in file MyTh. thy
$\rightarrow I m p T h_{i}$: name of imported theories. Import transitive.
Unless you need something special:
theory MyTh = Main:

Natural Deduction Rules

For each connective (\wedge, \vee, etc): introduction and elemination rules

Natural Deduction Rules

For each connective (\wedge, \vee, etc): introduction and elemination rules

Natural Deduction Rules

For each connective (\wedge, \vee, etc):
introduction and elemination rules

Natural Deduction Rules

For each connective (\wedge, \vee, etc):
introduction and elemination rules

Natural Deduction Rules

For each connective (\wedge, \vee, etc):
introduction and elemination rules

Natural Deduction Rules

For each connective (\wedge, \vee, etc):
introduction and elemination rules

Natural Deduction Rules

$$
\begin{array}{ll}
\frac{A B}{A \wedge B} \text { conjl } & \frac{A \wedge B \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE } \\
\frac{A}{A \vee B} \frac{B}{A \vee B} \text { disjl1/2 } & \frac{A \vee B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \text { disjE } \\
\frac{A \Longrightarrow B}{A \Longrightarrow B} \text { impl } & \frac{A \longrightarrow B \quad A \quad B \Longrightarrow C}{C} \text { impE }
\end{array}
$$

For each connective (\wedge, \vee, etc):
introduction and elemination rules

Proof by Assumption

apply assumption

proves

1. $\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C$
by unifying C with one of the B_{i}

Proof by Assumption

apply assumption

proves

1. $\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C$
by unifying C with one of the B_{i}

There may be more than one matching B_{i} and multiple unifi ers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow. apply (rule $<$ intro-rule $>$)

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow.
apply (rule <intro-rule>)

Intro rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow To prove A it suffices to show $A_{1} \ldots A_{n}$

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow.
apply (rule <intro-rule>)

Intro rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow To prove A it suffices to show $A_{1} \ldots A_{n}$

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal C :
\rightarrow unify A and C
\rightarrow replace C with n new subgoals $A_{1} \ldots A_{n}$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow. apply (erule $<$ elim-rule $>$)

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow.

$$
\text { apply (erule }<\text { elim-rule }>\text {) }
$$

Elim rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow If I know A_{1} and want to prove A it suffices to show $A_{2} \ldots A_{n}$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow.

$$
\text { apply (erule }<\text { elim-rule }>\text {) }
$$

Elim rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow If I know A_{1} and want to prove A it suffices to show $A_{2} \ldots A_{n}$

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal C :
Like rule but also
\rightarrow unifies first premise of rule with an assumption
\rightarrow eliminates that assumption

Demo

Exercises

\rightarrow what are the types of $\lambda x y . y x$ and $\lambda x y z \cdot x y(y z)$
\rightarrow construct a type derivation tree on paper for $\lambda x y z \cdot x y(y z)$
\rightarrow find a unifier (substitution) such that $\lambda x y$.?F $x=\lambda x y . c(? G y x)$
\rightarrow prove $(A \longrightarrow B \longrightarrow C)=(A \wedge B \longrightarrow C)$ in Isabelle
\rightarrow prove $\neg(A \wedge B) \Longrightarrow \neg A \vee \neg B$ in Isabelle (tricky!)

