

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

λ calculus is inconsistent

From last lecture:

Can find term R such that $R R =_{\beta} not(R R)$

There are more terms that do not make sense:

12, true false, etc.

λ calculus is inconsistent

From last lecture:

Can find term R such that $R R =_{\beta} not(R R)$

There are more terms that do not make sense:

12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Idea: assign a type to each "sensible" λ term.

Examples:

Idea: assign a type to each "sensible" λ term.

Examples:

 \rightarrow for term t has type α write $t :: \alpha$

Introducing types 4-A

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write $t :: \alpha$
- \rightarrow if x has type α then $\lambda x. \ x$ is a function from α to α Write: $(\lambda x. \ x) :: \alpha \Rightarrow a$

Introducing types 4-B

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write $t :: \alpha$
- \Rightarrow if x has type α then $\lambda x. \ x$ is a function from α to α Write: $(\lambda x. \ x) :: \alpha \Rightarrow a$
- \rightarrow for s t to be sensible:
 - s must be function
 - t must be right type for parameter

If $s :: \alpha \Rightarrow \beta$ and $t :: \alpha$ then $(s t) :: \beta$

Introducing types 4-c

THAT'S ABOUT IT

Now formally, again

Syntax for λ^{\rightarrow}

Terms:
$$t:=v\mid c\mid (t\;t)\mid (\lambda x.\;t)$$
 $v,x\in V,\;\;c\in C,\;\;V,C\;{\rm sets}\;{\rm of}\;{\rm names}$

Types:
$$\tau ::= b \mid \nu \mid \tau \Rightarrow \tau$$
 $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables

$$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$$

Syntax for λ^{\rightarrow}

Terms:
$$t:=v\mid c\mid (t\;t)\mid (\lambda x.\;t)$$
 $v,x\in V,\;\;c\in C,\;\;V,C\;{\rm sets}\;{\rm of}\;{\rm names}$

Types:
$$\tau:=b\mid \nu\mid \tau\Rightarrow \tau$$
 $b\in\{\text{bool},\text{int},\ldots\}$ base types $\nu\in\{\alpha,\beta,\ldots\}$ type variables

$$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$$

Contexts Γ :

 Γ : function from variable and constant names to types.

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$
 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

Types:
$$\tau:=b\mid \nu\mid \tau\Rightarrow \tau$$
 $b\in \{bool, int, \ldots\}$ base types $\nu\in \{\alpha,\beta,\ldots\}$ type variables

$$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$$

Contexts □:

 Γ : function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y.\ y)\ z :: \mathtt{bool}$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y.\ y)\ z :: \mathtt{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y.\ y)\ z :: \mathtt{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Type Checking Rules

Variables: $\overline{\Gamma \vdash x :: \Gamma(x)}$

Type Checking Rules

Variables: $\overline{\Gamma \vdash x :: \Gamma(x)}$

Application: $\frac{}{\Gamma \vdash (t_1 \ t_2) :: \tau_1}$

TYPE CHECKING RULES

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau_1 \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau_1}$$

TYPE CHECKING RULES

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau_1 \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau_1}$$

Abstraction:
$$\frac{}{\Gamma \vdash (\lambda x. \ t) :: \tau_1 \Rightarrow \tau_2}$$

TYPE CHECKING RULES

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau_1 \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau_1}$$

Abstraction:
$$\frac{\Gamma[x \leftarrow \tau_1] \vdash t :: \tau_2}{\Gamma \vdash (\lambda x. \ t) :: \tau_1 \Rightarrow \tau_2}$$

$$[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha$$

$$\frac{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha}$$

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}$$
$$\overline{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha}$$

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}$$

$$\underline{[y \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}$$

 $\boxed{[] \vdash \lambda f \ x. \ f \ x \ x ::}$

$$\boxed{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\frac{\Gamma \vdash f \ x \ x :: \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f \ x :: \alpha \Rightarrow \beta}{\Gamma \vdash f \ x \ x :: \beta}$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f \ x :: \alpha \Rightarrow \beta}{\Gamma \vdash x :: \alpha}$$

$$\frac{\Gamma \vdash f \ x \ x :: \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}$$

$$\frac{[f \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)}{\Gamma \vdash f x :: \alpha \Rightarrow \beta} \qquad \frac{\Gamma \vdash f x :: \alpha}{\Gamma \vdash f x x :: \beta} \\
\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash f :: \alpha \Rightarrow \beta}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash f :: \alpha \Rightarrow \beta}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash f :: \alpha}{\Gamma \vdash f :: \alpha} \frac{\Gamma \vdash f :: \alpha}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash f :: \alpha}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash f :: \alpha}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash f :: \alpha}{\Gamma \vdash x :: \alpha} \frac{\Gamma \vdash x :: \alpha}{\Gamma \vdash x ::$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

MORE GENERAL TYPES

A term can have more than one type.

More general Types 12

A term can have more than one type.

Example: $[] \vdash \lambda x. \ x :: bool \Rightarrow bool$

 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

Examples:

$$\operatorname{int} \Rightarrow \operatorname{bool} \quad \lesssim \quad \alpha \Rightarrow \beta$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

Examples:

$$\mathsf{int} \Rightarrow \mathsf{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

Examples:

$$\mathsf{int} \Rightarrow \mathsf{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad$$

Fact: each type correct term has a most general type

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

 \rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- \rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- **→ type inference:** computing Γ and τ such that $\Gamma \vdash t :: \tau$

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- \rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- **→ type inference:** computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

Definition of β reduction stays the same.

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally:
$$\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$$

This property is called **subject reduction**

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 β reduction in λ^{-} always terminates.

(Alan Turing, 1942)

 \rightarrow =_{β} is decidable

To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 \rightarrow =_{β} is decidable

To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.

 $\rightarrow =_{\alpha\beta\eta}$ is decidable

This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

Not all computable functions can be expressed in λ^{\rightarrow} !

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y::(\tau\Rightarrow\tau)\Rightarrow\tau$ with $Y:t\longrightarrow_{\beta}t$ (Y:t) as only constant.

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y::(\tau\Rightarrow\tau)\Rightarrow\tau$ with $Y\;t\longrightarrow_{\beta}t\;(Y\;t)$ as only constant.

- → *Y* is called fix point operator
- → used for recursion

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K$ $b \in \{bool, int, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $K \in \{set, list, \ldots\}$ type constructors $C \in \{order, linord, \ldots\}$ type classes

Terms: $t:=v\mid c\mid ?v\mid (t\;t)\mid (\lambda x.\;t)$ $v,x\in V,\quad c\in C,\quad V,C \text{ sets of names}$

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K$ $b \in \{bool, int, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $K \in \{\text{set}, \text{list}, \ldots\}$ type constructors $C \in \{\text{order}, \text{linord}, \ldots\}$ type classes

Terms:
$$t:=v\mid c\mid ?v\mid (t\;t)\mid (\lambda x.\;t)$$
 $v,x\in V,\quad c\in C,\quad V,C \text{ sets of names}$

→ type constructors: construct a new type out of a parameter type.

Example: int list

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K$ $b \in \{bool, int, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $K \in \{\text{set}, \text{list}, \ldots\}$ type constructors $C \in \{\text{order}, \text{linord}, \ldots\}$ type classes

Terms:
$$t:=v\mid c\mid ?v\mid (t\;t)\mid (\lambda x.\;t)$$
 $v,x\in V,\quad c\in C,\quad V,C \text{ sets of names}$

- → type constructors: construct a new type out of a parameter type.
 Example: int list
- ightharpoonup type classes: restrict type variables to a class defined by axioms. Example: $\alpha :: order$

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K$ $b \in \{bool, int, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $K \in \{\text{set}, \text{list}, \ldots\}$ type constructors $C \in \{\text{order}, \text{linord}, \ldots\}$ type classes

Terms:
$$t:=v\mid c\mid ?v\mid (t\;t)\mid (\lambda x.\;t)$$
 $v,x\in V,\quad c\in C,\quad V,C \text{ sets of names}$

- → type constructors: construct a new type out of a parameter type.
 Example: int list
- → **type classes**: restrict type variables to a class defined by axioms. Example: $\alpha :: order$
- → schematic variables: variables that can be instantiated.

→ similar to Haskell's type classes, but with semantic properties

```
axclass order < ord order_refl: "x \le x" order_trans: "[x \le y; y \le z] \Longrightarrow x \le z" . . . .
```

Type Classes 18

→ similar to Haskell's type classes, but with semantic properties

```
axclass order < ord order_refl: "x \le x" order_trans: "[x \le y; y \le z] \Longrightarrow x \le z"
```

→ theorems can be proved in the abstract

 $\textbf{lemma} \ \text{order_less_trans:} \ " \bigwedge x ::'a :: order. \ [\![x < y; y < z]\!] \Longrightarrow x < z"$

→ similar to Haskell's type classes, but with semantic properties

- ightharpoonup theorems can be proved in the abstract lemma order_less_trans: " $\bigwedge x ::'a :: order$. [x < y; y < z] $\Longrightarrow x < z$ "
- → can be used for subtyping

axclass linorder < order linear: " $x \le y \lor y \le x$ "

→ similar to Haskell's type classes, but with semantic properties

axclass order < ord $\text{order_refl: } "x \leq x" \\ \text{order_trans: } "[x \leq y; y \leq z]] \Longrightarrow x \leq z"$

- ightharpoonup theorems can be proved in the abstract lemma order_less_trans: " $\bigwedge x ::'a :: order$. [x < y; y < z] $\Longrightarrow x < z$ "
- → can be used for subtyping

axclass linorder < order linear: " $x \le y \lor y \le x$ "

→ can be instantiated
instance nat :: "{order, linorder}" by ...

SCHEMATIC VARIABLES

$$\frac{X}{X \wedge Y}$$

 \rightarrow X and Y must be **instantiated** to apply the rule

SCHEMATIC VARIABLES

$$\frac{X}{X \wedge Y}$$

 \rightarrow X and Y must be **instantiated** to apply the rule

But: lemma "x + 0 = 0 + x"

- $\rightarrow x$ is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

SCHEMATIC VARIABLES

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

But: lemma "x + 0 = 0 + x"

- $\rightarrow x$ is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is fi nished.

HIGHER ORDER UNIFICATION

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{rcl}
?X \wedge ?Y & =_{\alpha\beta\eta} & x \wedge x \\
?P x & =_{\alpha\beta\eta} & x \wedge x \\
P (?f x) & =_{\alpha\beta\eta} & ?Y x
\end{array}$$

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$?X \wedge ?Y =_{\alpha\beta\eta} x \wedge x \qquad [?X \leftarrow x, ?Y \leftarrow x]$$

$$?P x =_{\alpha\beta\eta} x \wedge x \qquad [?P \leftarrow \lambda x. \ x \wedge x]$$

$$P (?f x) =_{\alpha\beta\eta} ?Y x \qquad [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P]$$

Higher Order: schematic variables can be functions.

 \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

→ Most cases are well-behaved

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the from $?f t_1 \ldots t_n$
- \rightarrow and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

ightharpoonup Simply typed lambda calculus: $\lambda^{
ightharpoonup}$

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts

22-A

- → Simply typed lambda calculus: λ[→]
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates

- → Simply typed lambda calculus: λ[→]
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

PREVIEW: PROOFS IN ISABELLE

PROOFS IN ISABELLE

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

PROOFS IN ISABELLE 24

PROOFS IN ISABELLE

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all subgoals are solved.

Proofs in Isabelle 24-A

THE PROOF STATE

$$\mathbf{1.} \bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2.
$$\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$$

THE PROOF STATE

$$\mathbf{1.} \bigwedge x_1 \dots x_p. \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2.
$$\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$$

 $x_1 \dots x_p$ Parameters

 $A_1 \dots A_n$ Local assumptions

B Actual (sub)goal

ISABELLE THEORIES

Syntax:

```
theory MyTh = ImpTh_1 + ... + ImpTh_n: (declarations, defi nitions, theorems, proofs, ...)* end
```

- \rightarrow MyTh: name of theory. Must live in file MyTh. thy
- \rightarrow $ImpTh_i$: name of *imported* theories. Import transitive.

ISABELLE THEORIES

Syntax:

```
theory MyTh = ImpTh_1 + ... + ImpTh_n: (declarations, defi nitions, theorems, proofs, ...)* end
```

- \rightarrow MyTh: name of theory. Must live in file MyTh. thy
- \rightarrow $ImpTh_i$: name of *imported* theories. Import transitive.

Unless you need something special:

```
theory MyTh = Main:
```

$$\frac{A \wedge B}{A \wedge B} \ \text{conjl} \qquad \frac{A \wedge B}{C} \ \text{conjE}$$

$$\frac{A \vee B}{A \vee B} \ \frac{A \vee B}{A \vee B} \ \text{disjI1/2} \qquad \frac{A \vee B}{C} \ \text{disjE}$$

$$\frac{A \longrightarrow B}{A \longrightarrow B} \ \text{impl} \qquad \frac{A \longrightarrow B}{C} \ \text{impE}$$

$$\begin{array}{c} \frac{A \quad B}{A \wedge B} \text{ conjl} & \frac{A \wedge B}{C} & \text{conjE} \\ \\ \frac{A \vee B}{A \vee B} \frac{A \vee B}{A \vee B} \text{ disjI1/2} & \frac{A \vee B}{C} & \text{disjE} \\ \\ \frac{A \longrightarrow B}{A \longrightarrow B} \text{ impl} & \frac{A \longrightarrow B}{C} & \text{impE} \end{array}$$

PROOF BY ASSUMPTION

apply assumption

proves

1.
$$[B_1; \ldots; B_m] \Longrightarrow C$$

by unifying C with one of the B_i

PROOF BY ASSUMPTION

apply assumption

proves

1.
$$[B_1; \ldots; B_m] \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

INTRO RULES

Intro rules decompose formulae to the right of \Longrightarrow .

apply (rule <intro-rule>)

Intro rules 29

INTRO RULES

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow To prove A it suffices to show $A_1 \dots A_n$

29-A

INTRO RULES

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

ELIM RULES

Elim rules decompose formulae on the left of \Longrightarrow .

apply (erule <elim-rule>)

ELIM RULES

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

ELIM RULES

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

DEMO

EXERCISES

- \rightarrow what are the types of $\lambda x\ y.\ y\ x$ and $\lambda x\ y\ z.\ x\ y\ (y\ z)$
- \rightarrow construct a type derivation tree on paper for $\lambda x \ y \ z$. $x \ y \ (y \ z)$
- \rightarrow find a unifier (substitution) such that $\lambda x \ y$. ? $F \ x = \lambda x \ y$. $c \ (?G \ y \ x)$
- ightharpoonup prove $(A \longrightarrow B \longrightarrow C) = (A \land B \longrightarrow C)$ in Isabelle
- \rightarrow prove $\neg (A \land B) \Longrightarrow \neg A \lor \neg B$ in Isabelle (tricky!)