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NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

λ→

Slide 2

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

λ CALCULUS IS INCONSISTENT 1
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λ CALCULUS IS INCONSISTENT

From last lecture:
Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

Slide 4

INTRODUCING TYPES

Idea: assign a type to each “sensible” λ term.

Examples:

➜ for term t has type α write t :: α

➜ if x has type α then λx. x is a function from α to α

Write: (λx. x) :: α ⇒ a

➜ for s t to be sensible:

s must be function

t must be right type for parameter

If s :: α ⇒ β and t :: α then (s t) :: β

2
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SYNTAX FOR λ→ 3
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SYNTAX FOR λ→

Terms: t ::= v | c | (t t) | (λx. t)
v, x ∈ V, c ∈ C, V, C sets of names

Types: τ ::= b | ν | τ ⇒ τ

b ∈ {bool,int, . . .} base types

ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Contexts Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ` t :: τ
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EXAMPLES

Γ ` (λx. x) :: α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy. y) z :: bool

[] ` λf x. f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ` t :: τ

TYPE CHECKING RULES 4
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TYPE CHECKING RULES

Variables: Γ ` x :: Γ(x)

Application:
Γ ` t1 :: τ2 ⇒ τ1 Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ1

Abstraction:
Γ[x← τ1] ` t :: τ2

Γ ` (λx. t) :: τ1 ⇒ τ2
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EXAMPLE TYPE DERIVATION:

[x← α, y ← β] ` x :: α

[x← α] ` λy. x :: β ⇒ α

[] ` λx y. x :: α⇒ β ⇒ α

MORE COMPLEX EXAMPLE 5
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MORE COMPLEX EXAMPLE

Γ ` f :: α⇒ (α⇒ β) Γ ` x :: α

Γ ` f x :: α⇒ β Γ ` x :: α

Γ ` f x x :: β

[f ← α⇒ α⇒ β] ` λx. f x x :: α⇒ β

[] ` λf x. f x x :: (α⇒ α⇒ β)⇒ α⇒ β

Γ = [f ← α⇒ α⇒ β, x← α]
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MORE GENERAL TYPES

A term can have more than one type.

Example: [] ` λx. x :: bool ⇒ bool

[] ` λx. x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int ⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

MOST GENERAL TYPES 6
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MOST GENERAL TYPES

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

➜ type checking: checking if Γ ` t :: τ for given Γ and τ

➜ type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.
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WHAT ABOUT β REDUCTION?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ` s :: τ ∧ s −→β t =⇒ Γ ` t :: τ

This property is called subject reduction

WHAT ABOUT TERMINATION? 7
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WHAT ABOUT TERMINATION?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

➜ =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists,

because −→β terminates), and compare result.

➜ =αβη is decidable
This is why Isabelle can automatically reduce

each term to βη normal form.
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WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in λ→!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct
λ→ term using Y :: (τ ⇒ τ)⇒ τ with Y t −→β t (Y t) as only
constant.

➜ Y is called fix point operator

➜ used for recursion

TYPES AND TERMS IN ISABELLE 8
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TYPES AND TERMS IN ISABELLE

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors

C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors: construct a new type out of a parameter type.
Example: int list

➜ type classes: restrict type variables to a class defined by axioms.
Example: α :: order

➜ schematic variables: variables that can be instantiated.
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TYPE CLASSES

➜ similar to Haskell’s type classes, but with semantic properties

axclass order < ord

order refl: ”x ≤ x”

order trans: ”[[x ≤ y; y ≤ z]] =⇒ x ≤ z”

. . .

➜ theorems can be proved in the abstract

lemma order less trans: ”
V

x ::′a :: order. [[x < y; y < z]] =⇒ x < z”

➜ can be used for subtyping

axclass linorder < order

linorder linear: ”x ≤ y ∨ y ≤ x”

➜ can be instantiated

instance nat :: ”{order, linorder}” by . . .

SCHEMATIC VARIABLES 9
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SCHEMATIC VARIABLES

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule

But: lemma ”x + 0 = 0 + x”

➜ x is free

➜ convention: lemma must be true for all x

➜ during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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HIGHER ORDER UNIFICATION

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

?X∧?Y =αβη x ∧ x [?X ← x, ?Y ← x]

?P x =αβη x ∧ x [?P ← λx. x ∧ x]

P (?f x) =αβη ?Y x [?f ← λx. x, ?Y ← P ]

Higher Order: schematic variables can be functions.

HIGHER ORDER UNIFICATION 10



Slide 21

HIGHER ORDER UNIFICATION

➜ Unification modulo αβ (Higher Order Unification) is semi-decidable

➜ Unification modulo αβη is undecidable

➜ Higher Order Unification has possibly infinitely many solutions

But:

➜ Most cases are well-behaved

➜ Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

➜ is a term in β normal form where

➜ each occurrence of a schematic variable is of the from ?f t1 . . . tn

➜ and the t1 . . . tn are η-convertible into n distinct bound variables
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WE HAVE LEARNED SO FAR...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle

11
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PROOFS IN ISABELLE

General schema:

lemma name: ”<goal>”
apply <method>

apply <method>

. . .

done

➜ Sequential application of methods until
all subgoals are solved.

THE PROOF STATE 12
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THE PROOF STATE

1.
∧

x1 . . . xp.[[A1; . . . ; An]] =⇒ B

2.
∧

y1 . . . yq.[[C1; . . . ; Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . . An Local assumptions

B Actual (sub)goal
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ISABELLE THEORIES

Syntax:

theory MyTh = ImpTh1 + . . .+ ImpThn:

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpThi: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

NATURAL DEDUCTION RULES 13
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NATURAL DEDUCTION RULES

A B
A ∧B

conjI
A ∧ B [[A; B]] =⇒ C

C
conjE

A
A ∨B

B
A ∨B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

For each connective (∧,∨, etc):
introduction and elemination rules
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PROOF BY ASSUMPTION

apply assumption

proves

1. [[B1; . . . ; Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

INTRO RULES 14
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INTRO RULES

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ; An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . . An
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ELIM RULES

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ; An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption

15
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EXERCISES

➜ what are the types of λx y. y x and λx y z. x y (y z)

➜ construct a type derivation tree on paper for λx y z. x y (y z)

➜ find a unifier (substitution) such that λx y. ?F x = λx y. c (?G y x)

➜ prove (A −→ B −→ C) = (A ∧ B −→ C) in Isabelle

➜ prove ¬(A ∧ B) =⇒ ¬A ∨ ¬B in Isabelle (tricky!)

EXERCISES 16


