

NICTA Advanced Course
Theorem Proving
Principles, Techniques, Applications

## HOL

## Quasi Orders

$$
\lesssim:: \alpha \Rightarrow \alpha \Rightarrow \text { bool }
$$

is a quasi order iff it satisfies

$$
\begin{gathered}
x \lesssim x \text { (reflexivity) and } \\
x \lesssim y \wedge y \lesssim z \Longrightarrow x \lesssim z \text { (transitivity) }
\end{gathered}
$$

## Quasi Orders

$$
\lesssim:: \alpha \Rightarrow \alpha \Rightarrow \text { bool }
$$

is a quasi order iff it satisfies

$$
\begin{gathered}
x \lesssim x \text { (reflexivity) and } \\
x \lesssim y \wedge y \lesssim z \Longrightarrow x \lesssim z \text { (transitivity) }
\end{gathered}
$$

(a partial order is also antisymmetric: $x \leq y \wedge y \leq x \Longrightarrow x=y$ )

## Content

$\rightarrow$ Intro \& motivation, getting started with Isabelle
$\rightarrow$ Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
$\rightarrow$ Proof \& Specification Techniques
- Datatypes, recursion, induction
- Inductively defined sets, rule induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs


## Last Time on HOL

$\rightarrow$ natural deduction rules for $\wedge, \vee$ and $\longrightarrow$

## Last Time on HOL

$\rightarrow$ natural deduction rules for $\wedge, \vee$ and $\longrightarrow$
$\rightarrow$ proof by assumption

## Last Time on HOL

$\rightarrow$ natural deduction rules for $\wedge, \vee$ and $\longrightarrow$
$\rightarrow$ proof by assumption
$\rightarrow$ proof by intro rule

## Last Time on HOL

$\rightarrow$ natural deduction rules for $\wedge, \vee$ and $\longrightarrow$
$\rightarrow$ proof by assumption
$\rightarrow$ proof by intro rule
$\rightarrow$ proof by elim rule

## More Proof Rules

## Iff, Negation, True and False



## Iff, Negation, True and False

$$
\begin{array}{cc}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffi } & A=B \\
\text { iffD1 } & \\
\frac{A=B}{A} \text { iffD2 } \\
\frac{A=B}{\neg A} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

## Iff, Negation, True and False

$$
\begin{array}{cc}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffi } & \frac{A=B}{}[A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
C & \text { iffE } \\
\frac{A=B}{} \text { iffD1 } & \frac{A=B}{} \text { iffD2 } \\
\frac{\neg A}{} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

## Iff, Negation, True and False

$$
\begin{array}{cc}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffi } & \frac{A=B}{}[A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
C & \text { iffE } \\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B}{B \Longrightarrow A} \text { iffD2 } \\
\frac{\neg A}{} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

## Iff, Negation, True and False

$$
\begin{array}{cc}
\begin{array}{cc}
A \Longrightarrow B \quad B \Longrightarrow A \\
A=B & A=B i
\end{array} & \llbracket A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
\text { iffE } \\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B}{B \Longrightarrow A} \text { iffD2 } \\
\frac{A \Longrightarrow \text { False }}{} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

## Iff, Negation, True and False

$$
\begin{array}{cc}
\begin{array}{cc}
A \Longrightarrow B \quad B \Longrightarrow A \\
A=B & \text { iffi }
\end{array} & \frac{A=B}{} \llbracket A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
C & \text { iffE } \\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B}{B \Longrightarrow A} \text { iffD2 } \\
\frac{A \Longrightarrow F \text { alse }}{\neg A} \text { notl } & \frac{\neg A A}{P} \text { notE }
\end{array}
$$

## Iff, Negation, True and False

$$
\begin{array}{cc}
\begin{array}{cc}
A \Longrightarrow B \quad B \Longrightarrow A \\
A=B & \text { iffi }
\end{array} & A=B \\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B}{B \Longrightarrow A} \text { iffD2 } \\
\frac{A \Longrightarrow F \text { False }}{\neg A} \text { notl } & \frac{\neg A \quad A}{P} \text { notE } \\
\frac{\text { True }}{} \text { Truel } & \frac{\text { False }}{P} \text { FalseE }
\end{array}
$$

## Equality

$$
\overline{t=t} \text { refl } \quad \frac{s=t}{t=s} \text { sym } \quad \frac{r=s \quad s=t}{r=t} \text { trans }
$$

## EQUALITY

$$
\begin{aligned}
& \overline{t=t} \text { refl } \quad \frac{s=t}{t=s} \text { sym } \quad \frac{r=s \quad s=t}{r=t} \text { trans } \\
& \frac{s=t \quad P s}{P t} \text { subst }
\end{aligned}
$$

## EquAlity

$$
\begin{gathered}
\overline{t=t} \text { refl } \quad \frac{s=t}{t=s} \text { sym } \quad \frac{r=s \quad s=t}{r=t} \text { trans } \\
\frac{s=t \quad P s}{P t} \text { subst }
\end{gathered}
$$

Rarely needed explicitly — used implicitly by term rewriting

## Demo

## Classical

$$
\overline{P=\text { True } \vee P=\text { False }} \text { True-False }
$$

## Classical

$$
\overline{P=\text { True } \vee P=\text { False }} \text { True-False }
$$

$$
\overline{P \vee \neg P} \text { excluded-middle }
$$

$$
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \quad \frac{\neg A \Longrightarrow A}{A} \text { classical }
$$

## Classical

$$
\begin{gathered}
\overline{P=\text { True } \vee P=\text { False }} \text { True-False } \\
\frac{}{P \vee \neg P} \text { excluded-middle } \\
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \quad \frac{\neg A \Longrightarrow A}{A} \text { classical }
\end{gathered}
$$

$\rightarrow$ excluded-middle, ccontr and classical not derivable from the other rules.

## Classical

$$
\begin{gathered}
\overline{P=\text { True } \vee P=\text { False } \text { True-False }} \\
\frac{\overline{P \vee \neg P}}{} \text { excluded-middle } \\
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \quad \frac{\neg A \Longrightarrow A}{A} \text { classical }
\end{gathered}
$$

$\rightarrow$ excluded-middle, ccontr and classical not derivable from the other rules.
$\rightarrow$ if we include True-False, they are derivable
They make the logic "classical", "non-constructive"

## Cases

## $\overline{P \vee \neg P}$ excluded-middle

is a case distinction on type bool

## Cases

$$
\begin{aligned}
& \overline{P \vee \neg P} \text { excluded-middle } \\
& \text { is a case distinction on type bool }
\end{aligned}
$$

Isabelle can do case distinctions on arbitrary terms: apply (case_tac term)

## SAFE AND NOT So SAFE

Safe rules preserve provability

## Safe and not so safe

Safe rules preserve provability conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE $\frac{A \quad B}{A \wedge B}$ conjl

## SAFE AND NOT So SAFE

Safe rules preserve provability conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE $\frac{A \quad B}{A \wedge B}$ conjl

Unsafe rules can turn a provable goal into an unprovable one

## SAFE AND NOT So SAFE

Safe rules preserve provability conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE

$$
\frac{A}{A \vee B} \text { disjl1 }
$$

## Safe And not so Safe

Safe rules preserve provability conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE

$$
\frac{A}{A \vee B} \text { disjl1 }
$$

Apply safe rules before unsafe ones

## Demo

Quantifiers

## Scope

- Scope of parameters: whole subgoal
- Scope of $\forall, \exists, \ldots$. ends with ; or $\Longrightarrow$


## Example:

## Scope

- Scope of parameters: whole subgoal
- Scope of $\forall, \exists, \ldots$. ends with ; or $\Longrightarrow$


## Example:

$$
\bigwedge x y \cdot \llbracket \forall y . P y \longrightarrow Q z y ; Q x y \rrbracket \Longrightarrow \exists x . Q x y
$$

means

## Scope

- Scope of parameters: whole subgoal
- Scope of $\forall, \exists, \ldots$ : ends with ; or $\Longrightarrow$


## Example:

$$
\bigwedge x y \cdot \llbracket \forall y . P y \longrightarrow Q z y ; Q x y \rrbracket \Longrightarrow \exists x . Q x y
$$

means

$$
\wedge x y \cdot \llbracket\left(\forall y_{1} \cdot P y_{1} \longrightarrow Q z y_{1}\right) ; Q x y \rrbracket \Longrightarrow\left(\exists x_{1} \cdot Q x_{1} y\right)
$$

## Natural deduction for quantifiers

$$
\begin{aligned}
& \frac{\forall x . P x}{\forall x . P x} \text { alll } \quad \frac{\forall x . P}{} \\
& \frac{\exists x . P x}{} \text { exl } \quad \frac{\exists x . P x}{} \text { exE }
\end{aligned}
$$

## Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\bigwedge x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x \cdot P x}{R} \\
& \\
\frac{\exists x . P x}{} \text { exl } & \frac{\exists x \cdot P x}{} \\
R & \text { exE }
\end{array}
$$

## Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\bigwedge x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x \cdot P x \quad P ? x \Longrightarrow R}{R} \text { allE } \\
\frac{\exists x . P x}{} \text { exl } & \frac{\exists x . P x}{R} \\
& \text { exE }
\end{array}
$$

## Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\bigwedge x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x . P x}{} P ? x \Longrightarrow R \\
R & \text { allE } \\
\frac{P ? x}{\exists x \cdot P x} \text { exl } & \frac{\exists x . P x}{R}
\end{array}
$$

## Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\bigwedge x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x \cdot P x}{} P ? x \Longrightarrow R \\
R & \text { allE } \\
\frac{P ? x}{\exists x \cdot P x} \text { exl } & \frac{\exists x \cdot P x}{} \quad \text { exE }
\end{array}
$$

## Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\bigwedge x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x \cdot P x \quad P ? x \Longrightarrow R}{R} \text { allE } \\
\frac{P ? x}{\exists x \cdot P x} \text { exl } & \frac{\exists x . P x}{} \quad \wedge x \cdot P x \Longrightarrow R \\
R & \text { exE }
\end{array}
$$

- alll and exE introduce new parameters $(\bigwedge x)$.
- allE and exl introduce new unknowns (?x).


## Instantiating Rules

apply (rule_tac x = "term" in rule)

Like rule, but $? x$ in rule is instantiated by term before application.

Similar: erule_tac
! $x$ is in rule, not in goal !

## Two Successful Proofs

1. $\forall x \cdot \exists y \cdot x=y$

## Two Successful Proofs

1. $\forall x \cdot \exists y \cdot x=y$
apply (rule alll)
2. $\bigwedge x . \exists y \cdot x=y$

## Two Successful Proofs

1. $\forall x \cdot \exists y \cdot x=y$
apply (rule alll)
2. $\bigwedge x . \exists y \cdot x=y$
best practice
apply (rule_tac $x=$ "x" in exl)
3. $\bigwedge x . x=x$

## Two Successful Proofs

> 1. $\forall x . \exists y \cdot x=y$
> apply (rule alll)

1. $\bigwedge x . \exists y \cdot x=y$
best practice
apply (rule_tac $x=$ "x" in exl)
2. $\wedge x . x=x$
apply (rule refl)

## Two Successful Proofs

1. $\forall x \cdot \exists y \cdot x=y$
apply (rule alll)
2. $\bigwedge x . \exists y . x=y$
best practice
apply (rule_tac $\mathrm{x}=$ " x " in exl)
3. $\wedge x \cdot x=x$
exploration
apply (rule refl)
apply (rule exl)
4. $\wedge x . x=? y x$

## Two Successful Proofs

1. $\forall x \cdot \exists y \cdot x=y$
apply (rule alll)
2. $\bigwedge x . \exists y \cdot x=y$
best practice
apply (rule_tac $\mathrm{x}=$ " x " in exl)
3. $\wedge x . x=x$
apply (rule refl)
exploration
apply (rule exl)
4. $\wedge x . x=$ ? $y x$
apply (rule refl)
? $y \mapsto \lambda u . u$

## Two Successful Proofs

1. $\forall x . \exists y . x=y$
apply (rule alll)
2. $\bigwedge x . \exists y \cdot x=y$
best practice
apply (rule_tac $x=$ "x" in exl)
3. $\bigwedge x . x=x$
apply (rule refl)
simpler \& clearer
exploration
apply (rule exl)
4. $\bigwedge x . x=? y x$
apply (rule refl)
? $y \mapsto \lambda u . u$
shorter \& trickier

## Two Unsuccessful Proofs

1. $\exists y . \forall x \cdot x=y$

## Two Unsuccessful Proofs

\author{

1. $\exists y \cdot \forall x \cdot x=y$
}
apply (rule_tac x = ??? in exl)

## Two Unsuccessful Proofs

$$
\begin{gathered}
\text { 1. } \exists y \cdot \forall x \cdot x=y \\
\text { apply (rule_tac } \mathrm{x}=\text { ??? in exl) } \quad \begin{array}{l}
\text { apply (rule exl) } \\
\\
\\
\\
\end{array} . \forall x \cdot x=? y
\end{gathered}
$$

## Two Unsuccessful Proofs

\author{

1. $\exists y \cdot \forall x \cdot x=y$ <br> apply (rule_tac $\mathrm{x}=$ ? ?? ? in exl) apply (rule exl) <br> 1. $\forall x \cdot x=? y$ <br> apply (rule alli) <br> 1. $\bigwedge x . x=? y$
}

## Two Unsuccessful Proofs

\[

\]

## Two Unsuccessful Proofs

1. $\exists y \cdot \forall x \cdot x=y$
apply (rule_tac $\mathrm{x}=$ ? ?? ? in exl) apply (rule exl)
2. $\forall x . x=$ ? $y$
apply (rule alll)
3. $\wedge x . x=$ ? $y$
apply (rule refl)
$? y \mapsto x$ yields $\bigwedge x^{\prime} \cdot x^{\prime}=x$

## Principle:

?f $x_{1} \ldots x_{n}$ can only be replaced by term $t$
if $\operatorname{params}(t) \subseteq x_{1}, \ldots, x_{n}$

## Safe and Unsafe Rules

Safe alll, exE

Unsafe allE, exI

## Safe and Unsafe Rules

Safe alll, exE

Unsafe allE, exI

## Create parameters first, unknowns later

## Demo: Quantifier Proofs

## Parameter names

## Parameter names are chosen by Isabelle

1. $\forall x . \exists y \cdot x=y$

## Parameter names

# Parameter names are chosen by Isabelle 

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \exists y \cdot x=y \\
& \text { apply (rule allI) } \\
& \text { 1. } \bigwedge x \cdot \exists y \cdot x=y
\end{aligned}
$$

## Parameter names

Parameter names are chosen by Isabelle

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \exists y \cdot x=y \\
& \text { apply (rule alll) } \\
& \text { 1. } \wedge x . \exists y \cdot x=y \\
& \text { apply (rule_tac } \mathrm{x}=\text { "x" in exl) }
\end{aligned}
$$

## Brittle!

## Renaming parameters

1. $\forall x \cdot \exists y \cdot x=y$
apply (rule alli)
2. $\bigwedge x . \exists y . x=y$

## Renaming parameters

1. $\forall x \cdot \exists y \cdot x=y$
apply (rule alli)
2. $\bigwedge x . \exists y \cdot x=y$
apply (rename_tac N )
3. $\bigwedge N . \exists y . N=y$

## Renaming parameters

$$
\begin{aligned}
& \text { 1. } \forall x . \exists y \cdot x=y \\
& \text { apply (rule alll) } \\
& \text { 1. } \wedge x \cdot \exists y \cdot x=y \\
& \text { apply (rename_tac } \mathrm{N}) \\
& \text { 1. } \bigwedge N . \exists y \cdot N=y \\
& \text { apply (rule_tac } \mathrm{x}=\mathrm{N} \mathrm{~N} " \text { in exl) }
\end{aligned}
$$

In general:
(rename_tac $x_{1} \ldots x_{n}$ ) renames the rightmost (inner) $n$ parameters to $x_{1} \ldots x_{n}$

## Forward Proof: frule and drule

apply (frule $<$ rule $>$ )
Rule:
$\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A$
Subgoal:

1. $\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow C$

## Forward Proof: frule and drule

apply (frule $<$ rule $>$ )
Rule:
$\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A$
Subgoal:
Substitution: $\quad \sigma\left(B_{i}\right) \equiv \sigma\left(A_{1}\right)$

## Forward Proof: frule and drule

$$
\text { apply (frule }<\text { rule }>\text { ) }
$$

Rule:
$\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A$
Subgoal:

1. $\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow C$

Substitution: $\quad \sigma\left(B_{i}\right) \equiv \sigma\left(A_{1}\right)$
New subgoals: 1. $\sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{2}\right)$

$$
\begin{aligned}
& \text { m-1. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{m}\right) \\
& \text { m. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A \rrbracket \Longrightarrow C\right)
\end{aligned}
$$

## Forward Proof: frule and drule

$$
\text { apply }(\text { frule }<\text { rule }>\text { ) }
$$

Rule:
Subgoal:

$$
\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A
$$

1. $\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow C$

Substitution: $\quad \sigma\left(B_{i}\right) \equiv \sigma\left(A_{1}\right)$
New subgoals: 1. $\sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{2}\right)$

$$
\begin{aligned}
& \text { m-1. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{m}\right) \\
& \text { m. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A \rrbracket \Longrightarrow C\right)
\end{aligned}
$$

Like frule but also deletes $B_{i}$ : apply (drule $<$ rule $>$ )

## Examples for Forward Rules

$$
\frac{P \wedge Q}{P} \text { conjunct1 } \quad \frac{P \wedge Q}{Q} \text { conjunct2 }
$$

$$
\frac{P \longrightarrow Q \quad P}{Q} \mathrm{mp}
$$

$$
\frac{\forall x \cdot P x}{P ? x} \text { spec }
$$

## Forward Proof: OF

$$
r\left[\mathbf{O F} r_{1} \ldots r_{n}\right]
$$

Prove assumption 1 of theorem $r$ with theorem $r_{1}$, and assumption 2 with theorem $r_{2}$, and $\ldots$

## Forward Proof: OF

$$
r\left[\mathbf{O F} r_{1} \ldots r_{n}\right]
$$

Prove assumption 1 of theorem $r$ with theorem $r_{1}$, and assumption 2 with theorem $r_{2}$, and $\ldots$

$$
\begin{array}{ll}
\text { Rule } r & \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A \\
\text { Rule } r_{1} & \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow B
\end{array}
$$

## Forward Proof: OF

$$
r\left[\mathbf{O F} r_{1} \ldots r_{n}\right]
$$

Prove assumption 1 of theorem $r$ with theorem $r_{1}$, and assumption 2 with theorem $r_{2}$, and $\ldots$

$$
\begin{array}{ll}
\text { Rule } r & \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A \\
\text { Rule } r_{1} & \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow B \\
\text { Substitution } & \sigma(B) \equiv \sigma\left(A_{1}\right)
\end{array}
$$

## Forward Proof: OF

$$
r\left[\mathbf{O F} r_{1} \ldots r_{n}\right]
$$

Prove assumption 1 of theorem $r$ with theorem $r_{1}$, and assumption 2 with theorem $r_{2}$, and $\ldots$

$$
\begin{array}{ll}
\text { Rule } r & \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A \\
\text { Rule } r_{1} & \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow B \\
\text { Substitution } & \sigma(B) \equiv \sigma\left(A_{1}\right) \\
r\left[\text { OF } r_{1}\right] & \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A_{2} ; \ldots ; A_{m} \rrbracket \Longrightarrow A\right)
\end{array}
$$

## Forward proofs: THEN

$r_{1}$ [THEN $r_{2}$ ] means $r_{2}$ [OF $\left.r_{1}\right]$

Demo: Forward Proofs

## Hilbert's Epsilon Operator


(David Hilbert, 1862-1943)
$\varepsilon x . P x$ is a value that satisfies $P$ (if such a value exists)

## Hilbert's Epsilon Operator


(David Hilbert, 1862-1943)
$\varepsilon x . P x$ is a value that satisfies $P$ (if such a value exists)
$\varepsilon$ also known as description operator. In Isabelle the $\varepsilon$-operator is written SOME $x . P x$

## Hilbert's Epsilon Operator


(David Hilbert, 1862-1943)
$\varepsilon x . P x$ is a value that satisfies $P$ (if such a value exists)
$\varepsilon$ also known as description operator.
In Isabelle the $\varepsilon$-operator is written SOME $x . P x$

$$
\frac{P ? x}{P(\text { SOME } x . P x)} \text { somel }
$$

## More Epsilon

$\varepsilon$ implies Axiom of Choice:

$$
\forall x . \exists y \cdot Q x y \Longrightarrow \exists f . \forall x . Q x(f x)
$$

Existential and universial quantification can be defined with $\varepsilon$.

## More Epsilon

$\varepsilon$ implies Axiom of Choice:

$$
\forall x . \exists y . Q x y \Longrightarrow \exists f . \forall x . Q x(f x)
$$

Existential and universial quantification can be defined with $\varepsilon$.

Isabelle also know the definite description operator THE (also $\iota$ ):

$$
\overline{(\mathrm{THE} x . x=a)=a} \text { the_eq_trivial }
$$

## Some Automation

## More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules
apply (elim <elim-rules>) repeatedly applies elim rules

## Some Automation

## More Proof Methods:

apply (intro <intro-rules $>$ ) repeatedly applies intro rules
apply (elim <elim-rules>) repeatedly applies elim rules
apply clarify
applies all safe rules
that do not split the goal

## Some Automation

## More Proof Methods:

| apply (intro <intro-rules>) | repeatedly applies intro rules |
| :--- | :--- |
| apply (elim <elim-rules>) | repeatedly applies elim rules |
| apply clarify | applies all safe rules <br> that do not split the goal |
| apply safe | applies all safe rules |

## Some Automation

## More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules
apply (elim <elim-rules>) repeatedly applies elim rules
apply clarify
applies all safe rules
that do not split the goal
apply safe
apply blast
applies all safe rules
an automatic tableaux prover (works well on predicate logic)

## Some Automation

## More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules
apply (elim <elim-rules>) repeatedly applies elim rules
apply clarify
applies all safe rules
that do not split the goal
apply safe
apply blast
applies all safe rules
an automatic tableaux prover (works well on predicate logic)
apply fast
another automatic search tactic

Epsilon and Automation Demo

## We have learned so far...

$\rightarrow$ Proof rules for negation and contradiction

## We have learned so far...

$\rightarrow$ Proof rules for negation and contradiction
$\rightarrow$ Proof rules for predicate calculus

## We have learned so far...

$\rightarrow$ Proof rules for negation and contradiction
$\rightarrow$ Proof rules for predicate calculus
$\rightarrow$ Safe and unsafe rules

## We have learned so far...

$\rightarrow$ Proof rules for negation and contradiction
$\rightarrow$ Proof rules for predicate calculus
$\rightarrow$ Safe and unsafe rules
$\rightarrow$ Forward Proof

## We have learned so far...

$\rightarrow$ Proof rules for negation and contradiction
$\rightarrow$ Proof rules for predicate calculus
$\rightarrow$ Safe and unsafe rules
$\rightarrow$ Forward Proof
$\rightarrow$ The Epsilon Operator

## We have learned so far...

$\rightarrow$ Proof rules for negation and contradiction
$\rightarrow$ Proof rules for predicate calculus
$\rightarrow$ Safe and unsafe rules
$\rightarrow$ Forward Proof
$\rightarrow$ The Epsilon Operator
$\rightarrow$ Some automation

## Exercises

$\rightarrow$ Download the exercise file and prove all theorems in there.
$\rightarrow$ Prove or disprove:
If every poor person has a rich mother, then there is a rich person with a rich grandmother.

