CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
- Term rewriting

Slide 3

- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

LAST TIME ON HOL

- \twoheadrightarrow natural deduction rules for $\wedge, \vee \text{ and } \longrightarrow$
- → proof by assumption
- Slide 4 → proof by intro rule
 - → proof by elim rule

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

HOL

QUASI ORDERS

 $\lesssim :: \alpha \Rightarrow \alpha \Rightarrow bool$

is a quasi order iff it satisfies

Slide 2

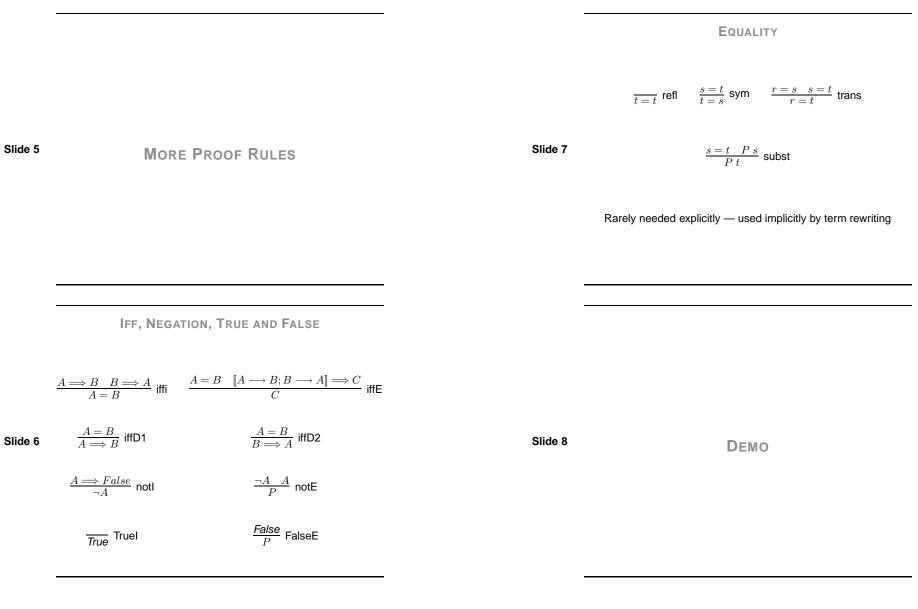
CONTENT

 $x \lesssim x$ (reflexivity) and

 $x \lesssim y \wedge y \lesssim z \Longrightarrow x \lesssim z$ (transitivity)

(a partial order is also antisymmetric: $x \le y \land y \le x \Longrightarrow x = y$)

.



EQUALITY

CLASSICAL

CLASSICAL

$$\overline{P = True \lor P = False}$$
 True-False

 $\overline{P \lor \neg P}$ excluded-middle

Slide 9

$$\frac{\neg A \Longrightarrow False}{A} \text{ ccontr } \quad \frac{\neg A \Longrightarrow A}{A} \text{ classical}$$

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-False, they are derivable

They make the logic "classical", "non-constructive"

CASES

 $\overline{P \lor \neg P}$ excluded-middle

is a case distinction on type bool

Slide 10

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

SAFE AND NOT SO SAFE

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$rac{A}{A \wedge B}$$
 conjl

Slide 11 Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \lor B}$$
 disjl1

Apply safe rules before unsafe ones

Slide 12

DEMO

NATURAL DEDUCTION FOR QUANTIFIERS

$$\frac{\bigwedge x. P x}{\forall x. P x} \text{ all } \frac{\forall x. P x \quad P ? x \Longrightarrow R}{R} \text{ all }$$

Slide 15

$\frac{P ? x}{\exists x. P x} exl$	$\exists x. \ P \ x$	$\bigwedge x. P x \Longrightarrow R$	οvΕ
	R		ex⊏

- all and **exE** introduce new parameters $(\bigwedge x)$.
- allE and exl introduce new unknowns (?x).

SCOPE

QUANTIFIERS

- Scope of parameters: whole subgoal
- Scope of $\forall,\exists,\ldots:$ ends with ; or \Longrightarrow

Example: Slide 14

Slide 13

 $\bigwedge x \ y. \ [\![\ \forall y. \ P \ y \longrightarrow Q \ z \ y; \ Q \ x \ y \]\!] \implies \exists x. \ Q \ x \ y$

means

 $\bigwedge x \ y. \ \llbracket \ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \ \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$

apply (rule_tac x = "term" in rule)

Like **rule**, but ?*x* in *rule* is instantiated by *term* before application.

Slide 16 Similar: erule_tac

x is in *rule*, not in goal

NATURAL DEDUCTION FOR QUANTIFIERS

	Two Success	UL PROOFS		SAFE AND UNSAFE RULES
	1. $\forall x. \exists y.$	x = y		
	apply (rule			Safe alll, exE
1. $\bigwedge x$. $\exists y$. $x = y$				
	best practice	exploration		Unsafe allE, exl
Slide 17	apply (rule_tac x = "x" in exl)	apply (rule exl)	Slide 19	
	1. $\bigwedge x. x = x$	1. $\bigwedge x. x = ?y x$		Create parameters first, unknowns later
	apply (rule refl)	apply (rule refl)		
		$?y\mapsto\lambda u.u$		
	simpler & clearer	shorter & trickier		
	Two Unsuccess 1. ∃y. ∀x. x	= y		
	apply (rule_tac x = ??? in exl)	apply (rule exl) 1. $\forall x. x = ?y$		
		apply (rule alll)		
		1. $\bigwedge x. x = ?y$		
Slide 18		apply (rule refl)	Slide 20	Demo: Quantifier Proofs
		$y \mapsto x$ yields $\bigwedge x'.x' = x$		
	Principle:			
	? $f x_1 \dots x_n$ can only be replace if $params(t) \subseteq x_1, \dots, x_n$	ed by term t		

SAFE AND UNSAFE RULES

PARAMETER NAMES

PARAMETER NAMES

Parameter names are chosen by Isabelle

1. $\forall x. \exists y. x = y$

Slide 21

Slide 22

apply (rule alli) 1. $\bigwedge x$. $\exists y$. x = y

apply (rule_tac x = "x" in exl)

Brittle!

Renaming parameters

1. $\forall x. \exists y. x = y$

apply (rule all!) 1. $\bigwedge x$. $\exists y$. x = y

apply (rename_tac N) 1. $\bigwedge N$. $\exists y$. N = y

apply (rule_tac x = "N" in exl)

In general: (rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to $x_1 \dots x_n$ FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule:	$\llbracket A_1;\ldots;A_m\rrbracket \Longrightarrow A$
Subgoal:	1. $\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow C$
Substitution:	$\sigma(\underline{B_i}) \equiv \sigma(A_1)$
New subgoals:	1. $\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_2)$
	÷
	$m-1.\ \sigma(\llbracket B_1;\ldots;B_n\rrbracket \Longrightarrow A_m)$
	m. $\sigma(\llbracket B_1; \ldots; B_n; A \rrbracket \Longrightarrow C)$

Like frule but also deletes B_i : apply (drule < rule >)

EXAMPLES FOR FORWARD RULES

$$\frac{P \wedge Q}{P}$$
 conjunct1 $\frac{P \wedge Q}{Q}$ conjunct2

Slide 24

Slide 23

$$\frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

 $\frac{\forall x. P x}{P ? x}$ spec

FORWARD PROOF: FRULE AND DRULE

FORWARD PROOF: OF

FORWARD PROOF: OF

r [**OF** $r_1 \dots r_n$]

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Slide 25

Rule r $\llbracket A_1; \ldots; A_m \rrbracket \Longrightarrow A$ Rule r_1 $\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow B$ Substitution $\sigma(B) \equiv \sigma(A_1)$ r [OF r_1] $\sigma(\llbracket B_1; \ldots; B_n; A_2; \ldots; A_m \rrbracket \Longrightarrow A)$

FORWARD PROOFS: THEN

 $r_1 \ [\mathsf{THEN} \ r_2] \quad \mathsf{means} \quad r_2 \ [\mathsf{OF} \ r_1]$

Slide 26

Slide 27

DEMO: FORWARD PROOFS

HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)

Slide 28

 $\varepsilon x. Px$ is a value that satisfies P (if such a value exists)

 ε also known as **description operator**. In Isabelle the ε -operator is written SOME x. P x

$$\frac{P ? x}{P (\mathsf{SOME} x. P x)} \mathsf{ somel}$$

MORE EPSILON

ε implies Axiom of Choice:

 $\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \forall x. Q \ x \ (f \ x)$

Existential and universial quantification can be defined with ε .

Slide 29

Isabelle also know the definite description operator **THE** (also *i*):

$$\overline{(\mathsf{THE}\ x.\ x=a)=a}$$
 the_eq_trivial

Some Automation

More Proof Methods:

	<pre>apply (intro <intro-rules>) apply (elim <elim-rules>)</elim-rules></intro-rules></pre>	repeatedly applies intro rules repeatedly applies elim rules	
Slide 30	apply clarify	applies all safe rules that do not split the goal	
	apply safe	applies all safe rules	
	apply blast	an automatic tableaux prover (works well on predicate logic)	
	apply fast	another automatic search tactic	

Slide 31 EPSILON AND AUTOMATION DEMO

WE HAVE LEARNED SO FAR...

- → Proof rules for negation and contradiction
- ➔ Proof rules for predicate calculus
- → Safe and unsafe rules
- Slide 32 → Forward Proof
 - → The Epsilon Operator
 - ➔ Some automation

EXERCISES

→ Download the exercise file and prove all theorems in there.

➔ Prove or disprove:

Slide 33 If every poor person has a rich mother, then there is a rich person with a rich grandmother.