

NICTA Advanced Course
Theorem Proving
Principles, Techniques, Applications

Content

\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs

Last Time on HOL

\rightarrow Defining HOL

Last Time on HOL

\rightarrow Defining HOL
\rightarrow Higher Order Abstract Syntax

Last Time on HOL

\rightarrow Defining HOL
\rightarrow Higher Order Abstract Syntax
\rightarrow Deriving proof rules

Last Time on HOL

\rightarrow Defining HOL
\rightarrow Higher Order Abstract Syntax
\rightarrow Deriving proof rules
\rightarrow More automation

The Three Basic Ways of Introducing Theorems

\rightarrow Axioms:
Expample: axioms refl: " $t=t$ "

The Three Basic Ways of Introducing Theorems

\rightarrow Axioms:
Expample: axioms refl: " $t=t$ "
Do not use. Evil. Can make your logic inconsistent.

The Three Basic Ways of Introducing Theorems

\rightarrow Axioms:
Expample: axioms refl: " $t=t$ "
Do not use. Evil. Can make your logic inconsistent.
\rightarrow Definitions:
Example: \quad defs inj_def: "inj $f \equiv \forall x y . f x=f y \longrightarrow x=y "$

The Three Basic Ways of Introducing Theorems

\rightarrow Axioms:
Expample: axioms refl: " $t=t$ "
Do not use. Evil. Can make your logic inconsistent.
\rightarrow Definitions:
Example: \quad defs inj_def: "inj $f \equiv \forall x y . f x=f y \longrightarrow x=y$ "
\rightarrow Proofs:
Example: lemma "inj $(\lambda x . x+1)$ "

The Three Basic Ways of Introducing Theorems

\rightarrow Axioms:
Expample: axioms refl: " $t=t$ "
Do not use. Evil. Can make your logic inconsistent.
\rightarrow Definitions:
Example: \quad defs inj_def: "inj $f \equiv \forall x y . f x=f y \longrightarrow x=y "$
\rightarrow Proofs:
Example: lemma "inj $(\lambda x . x+1)$ "
The harder, but safe choice.

The Three Basic Ways of Introducing Types

\rightarrow typedecl: by name only
Example: typedecl names

The Three Basic Ways of Introducing Types

\rightarrow typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions

The Three Basic Ways of Introducing Types

\rightarrow typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions
\rightarrow types: by abbreviation
Example: \quad types α rel $=" \alpha \Rightarrow \alpha \Rightarrow$ bool"

The Three Basic Ways of Introducing Types

\rightarrow typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions
\rightarrow types: by abbreviation
Example: \quad types α rel $=" \alpha \Rightarrow \alpha \Rightarrow$ bool"
Introduces abbreviation rel for existing type $\alpha \Rightarrow \alpha \Rightarrow$ bool
Type abbreviations are immediatly expanded internally

The Three Basic Ways of Introducing Types

\rightarrow typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions
\rightarrow types: by abbreviation
Example: \quad types α rel $=" \alpha \Rightarrow \alpha \Rightarrow$ bool"
Introduces abbreviation rel for existing type $\alpha \Rightarrow \alpha \Rightarrow$ bool
Type abbreviations are immediatly expanded internally
\rightarrow typedef: by definiton as a set
Example: \quad typdef new_type $="\{$ some set $\} "<$ proof $>$

The Three Basic Ways of Introducing Types

\rightarrow typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions
\rightarrow types: by abbreviation
Example: \quad types α rel $=" \alpha \Rightarrow \alpha \Rightarrow$ bool"
Introduces abbreviation rel for existing type $\alpha \Rightarrow \alpha \Rightarrow$ bool
Type abbreviations are immediatly expanded internally
\rightarrow typedef: by definiton as a set
Example: typdef new_type = "\{some set\}" <proof $>$ Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

How typedef Works

Example: Pairs

$$
(\alpha, \beta) \text { Prod }
$$

(1) Pick existing type:

Example: Pairs

$$
(\alpha, \beta) \text { Prod }
$$

(1) Pick existing type: $\alpha \Rightarrow \beta \Rightarrow$ bool
(2) Identify subset:

Example: Pairs

$$
(\alpha, \beta) \text { Prod }
$$

(1) Pick existing type: $\alpha \Rightarrow \beta \Rightarrow$ bool
(2) Identify subset:

$$
(\alpha, \beta) \text { Prod }=\{f . \exists a b . f=\lambda(x:: \alpha)(y:: \beta) . x=a \wedge y=b\}
$$

(3) We get from Isabelle:

Example: Pairs

$$
(\alpha, \beta) \text { Prod }
$$

(1) Pick existing type: $\alpha \Rightarrow \beta \Rightarrow$ bool
(2) Identify subset:

$$
(\alpha, \beta) \operatorname{Prod}=\{f . \exists a b . f=\lambda(x:: \alpha)(y:: \beta) . x=a \wedge y=b\}
$$

(3) We get from Isabelle:

- functions Abs_Prod, Rep_Prod
- both injective
- Abs_Prod (Rep_Prod $x)=x$
(4) We now can:

Example: Pairs

$$
(\alpha, \beta) \text { Prod }
$$

(1) Pick existing type: $\alpha \Rightarrow \beta \Rightarrow$ bool
(2) Identify subset:

$$
(\alpha, \beta) \operatorname{Prod}=\{f . \exists a b . f=\lambda(x:: \alpha)(y:: \beta) . x=a \wedge y=b\}
$$

(3) We get from Isabelle:

- functions Abs_Prod, Rep_Prod
- both injective
- Abs_Prod (Rep_Prod $x)=x$
(4) We now can:
- define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
- derive all characteristic theorems
- forget about Rep/Abs, use characteristic theorems instead

Demo: Introducting new Types

Term Rewriting

The Problem

Given a set of equations

$$
\begin{gathered}
l_{1}=r_{1} \\
l_{2}=r_{2} \\
\vdots \\
l_{n}=r_{n}
\end{gathered}
$$

The Problem

Given a set of equations

$$
\begin{gathered}
l_{1}=r_{1} \\
l_{2}=r_{2} \\
\vdots \\
l_{n}=r_{n}
\end{gathered}
$$

does equation $l=r$ hold?

The Problem

Given a set of equations

$$
\begin{gathered}
l_{1}=r_{1} \\
l_{2}=r_{2} \\
\vdots \\
l_{n}=r_{n}
\end{gathered}
$$

does equation $l=r$ hold?

Applications in:

\rightarrow Mathematics (algebra, group theory, etc)
\rightarrow Functional Programming (model of execution)
\rightarrow Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

$$
\begin{gathered}
l_{1} \longrightarrow r_{1} \\
l_{2} \longrightarrow r_{2} \\
\vdots \\
l_{n} \longrightarrow r_{n}
\end{gathered}
$$

decide $l=r$ by deciding $l \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

$$
\xrightarrow{0}=\{(x, y) \mid x=y\} \quad \text { identity }
$$

Arrow Cheat Sheet

$$
\begin{array}{lll}
\xrightarrow{0} & =\{(x, y) \mid x=y\} & \\
\text { identity } \\
\xrightarrow{n+1} & =\xrightarrow{n} \circ \longrightarrow & \mathrm{n}+1 \text { fold composition }
\end{array}
$$

Arrow Cheat Sheet

$$
\begin{array}{lll}
\xrightarrow{0} & =\{(x, y) \mid x=y\} & \\
\text { identity } \\
\xrightarrow{n+1} & =\xrightarrow{n} 0 \longrightarrow & \mathrm{n}+1 \text { fold composition } \\
\xrightarrow{+} & =\bigcup_{i>0} \xrightarrow{i} & \\
\text { transitive closure }
\end{array}
$$

Arrow Cheat Sheet

$$
\begin{array}{lll}
\xrightarrow{0} & =\{(x, y) \mid x=y\} & \text { identity } \\
\xrightarrow{n+1} & =\xrightarrow{n} 0 \longrightarrow & \mathrm{n}+1 \text { fold composition } \\
\xrightarrow{+} & =\bigcup_{i>0} \xrightarrow{i} & \text { transitive closure } \\
\xrightarrow{*} & =\xrightarrow{+} \cup \xrightarrow{0} & \text { refexive transitive closure }
\end{array}
$$

Arrow Cheat Sheet

$$
\begin{array}{lll}
\xrightarrow{0} & =\{(x, y) \mid x=y\} & \text { identity } \\
\xrightarrow{n+1} & =\xrightarrow{n} 0 \longrightarrow & \mathrm{n}+1 \text { fold composition } \\
\xrightarrow{+}=\bigcup_{i>0} \xrightarrow{i} & \text { transitive closure } \\
\xrightarrow{*} & =\xrightarrow{+} \cup \xrightarrow{0} & \text { reflexive transitive closure } \\
= & \longrightarrow \cup \xrightarrow{0} & \text { refexive closure }
\end{array}
$$

Arrow Cheat Sheet

$$
\begin{aligned}
& \xrightarrow{0}=\{(x, y) \mid x=y\} \quad \text { identity } \\
& \xrightarrow{n+1} 0 \xrightarrow{n} 0 \longrightarrow 1 \text { fold composition } \\
& \xrightarrow{+}=\bigcup_{i>0} \xrightarrow{i} \quad \text { transitive closure } \\
& \xrightarrow{*} \quad+\quad \xrightarrow{0} \quad \text { reflexive transitive closure } \\
& \xrightarrow{=}=\longrightarrow \cup \xrightarrow{0} \text { reflexive closure } \\
& \xrightarrow{-1}=\{(y, x) \mid x \longrightarrow y\} \quad \text { inverse }
\end{aligned}
$$

Arrow Cheat Sheet

$$
\begin{array}{lll}
\xrightarrow{0} & =\{(x, y) \mid x=y\} & \text { identity } \\
\xrightarrow{n+1} & =\xrightarrow{n} 0 \longrightarrow & \mathrm{n}+1 \text { fold composition } \\
\xrightarrow{+}=\bigcup_{i>0} \xrightarrow{i} & \text { transitive closure } \\
\xrightarrow{*} & =\xrightarrow{+} \cup \xrightarrow{0} & \text { reflexive transitive closure } \\
= & =\longrightarrow \xrightarrow{0} & \text { refexive closure } \\
\xrightarrow{-1} & =\{(y, x) \mid x \longrightarrow y\} & \text { inverse } \\
\longleftrightarrow & \xrightarrow{-1} & \text { inverse }
\end{array}
$$

Arrow Cheat Sheet

$$
\begin{array}{lll}
\xrightarrow{0} & =\{(x, y) \mid x=y\} & \text { identity } \\
\xrightarrow{n+1} & =\xrightarrow{n} 0 \longrightarrow & \mathrm{n}+1 \text { fold composition } \\
\xrightarrow{+}=\bigcup_{i>0} \xrightarrow{i} & \text { transitive closure } \\
\xrightarrow{*} & =\xrightarrow{+} \cup \stackrel{0}{\longrightarrow} & \text { reflexive transitive closure } \\
= & \text { refexive closure } \\
\xrightarrow{-1} & =\{(y, x) \mid x \longrightarrow y\} & \text { inverse } \\
\longleftrightarrow & \\
\longleftrightarrow & \text { inverse } \\
\longleftrightarrow & & \text { symmetric closure }
\end{array}
$$

Arrow Cheat Sheet

$$
\begin{aligned}
& \xrightarrow{0}=\{(x, y) \mid x=y\} \quad \text { identity } \\
& \xrightarrow{n+1}=\xrightarrow{n} 0 \longrightarrow \quad \mathrm{n}+1 \text { fold composition } \\
& \xrightarrow{+}=\bigcup_{i>0} \xrightarrow{i} \quad \text { transitive closure } \\
& \xrightarrow{*}=\xrightarrow{+} \cup \xrightarrow{0} \quad \text { reflexive transitive closure } \\
& \xrightarrow{=} \quad \longrightarrow \cup \xrightarrow{0} \quad \text { reflexive closure } \\
& \xrightarrow{-1}=\{(y, x) \mid x \longrightarrow y\} \quad \text { inverse } \\
& \longleftarrow \quad \xrightarrow{-1} \quad \text { inverse } \\
& \longleftrightarrow=\longleftarrow \cup \longrightarrow \\
& \stackrel{+}{\longleftrightarrow}=\bigcup_{i>0} \stackrel{i}{\longleftrightarrow} \\
& \stackrel{*}{\longleftrightarrow}=\stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow} \\
& \text { symmetric closure } \\
& \text { transitive symmetric closure } \\
& \text { reflexive transitive symmetric closure }
\end{aligned}
$$

How To DECIDE $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β :

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ?

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? No!

Example:

Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? No!

Example:

Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$
$f x \stackrel{*}{\longleftrightarrow} g x \quad$ because $\quad f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? No!

Example:

Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$
$f x \stackrel{*}{\longleftrightarrow} g x \quad$ because $\quad f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$
But: $\quad f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? No!

Example:

Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$
$f x \stackrel{*}{\longleftrightarrow} g x \quad$ because $\quad f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$
But: $\quad f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with Church-Rosser property:

$$
l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n . l \xrightarrow{*} n \wedge r \xrightarrow{*} n
$$

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? No!

Example:

Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$
$f x \stackrel{*}{\longleftrightarrow} g x \quad$ because $\quad f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$
But: $\quad f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with Church-Rosser property:

$$
l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n . l \xrightarrow{*} n \wedge r \xrightarrow{*} n
$$

Fact \longrightarrow is Church-Rosser iff it is confuent.

Confluence

Problem:

is a given set of reduction rules confluent?

Confluence

Problem:

is a given set of reduction rules confuent?

undecidable

Confluence

Problem:

is a given set of reduction rules confluent?
undecidable

Local Confluence

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination \Longrightarrow confuence

Termination

\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confluent

Example:

Termination

\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confluent

Example:

\longrightarrow_{β} in λ is not terminating, but confuent

Termination

\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confluent

Example:

\longrightarrow_{β} in λ is not terminating, but confluent
$\longrightarrow \beta$ in $\lambda \rightarrow$ is terminating and confluent, i.e. convergent

Termination

\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confuent

Example:

\longrightarrow_{β} in λ is not terminating, but confuent
\longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

Termination

\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confuent

Example:

\longrightarrow_{β} in λ is not terminating, but confuent
\longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic Idea:

When is \longrightarrow Terminating?

Basic Idea: when the r_{i} are in some way simpler then the l_{i}

When is \longrightarrow Terminating?

Basic Idea: when the r_{i} are in some way simpler then the l_{i}
More formally: \longrightarrow is terminating when
there is a well founded order $<$ in which $r_{i}<l_{i}$ for all rules.
(well founded $=$ no infinite decreasing chains $a_{1}>a_{2}>\ldots$.)

Example:

When is \longrightarrow Terminating?

Basic Idea: when the r_{i} are in some way simpler then the l_{i}
More formally: \longrightarrow is terminating when
there is a well founded order $<$ in which $r_{i}<l_{i}$ for all rules.
(well founded = no infinite decreasing chains $a_{1}>a_{2}>\ldots$.)
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:

When is \longrightarrow Terminating?

Basic Idea: when the r_{i} are in some way simpler then the l_{i}
More formally: \longrightarrow is terminating when
there is a well founded order $<$ in which $r_{i}<l_{i}$ for all rules.
(well founded = no infinite decreasing chains $a_{1}>a_{2}>\ldots$.)
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:
$s<_{r} t$ iff $\operatorname{size}(s)<\operatorname{size}(t)$ with
$\operatorname{size}(s)=$ numer of function symbols in s

When is \longrightarrow Terminating?

Basic Idea: when the r_{i} are in some way simpler then the l_{i}
More formally: \longrightarrow is terminating when
there is a well founded order $<$ in which $r_{i}<l_{i}$ for all rules.
(well founded = no infinite decreasing chains $a_{1}>a_{2}>\ldots$.)
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:
$s<_{r} t$ iff $\operatorname{size}(s)<\operatorname{size}(t)$ with
$\operatorname{size}(s)=$ numer of function symbols in s
(1) $g x<_{r} f(g x)$ and $f x<_{r} g(f x)$

When is \longrightarrow Terminating?

Basic Idea: when the r_{i} are in some way simpler then the l_{i}
More formally: \longrightarrow is terminating when
there is a well founded order $<$ in which $r_{i}<l_{i}$ for all rules.
(well founded = no infinite decreasing chains $a_{1}>a_{2}>\ldots$.)
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:

$$
s<_{r} t \text { iff } \operatorname{size}(s)<\operatorname{size}(t) \text { with }
$$

$\operatorname{size}(s)=$ numer of function symbols in s
(1) $g x<_{r} f(g x)$ and $f x<_{r} g(f x)$
(2) $<_{r}$ is well founded, because $<$ is well founded on \mathbb{N}

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

\rightarrow uses simplification rules

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

\rightarrow uses simplification rules
\rightarrow (almost) blindly from left to right

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

\rightarrow uses simplification rules
\rightarrow (almost) blindly from left to right
\rightarrow until no rule is applicable.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

\rightarrow uses simplification rules
\rightarrow (almost) blindly from left to right
\rightarrow until no rule is applicable.
termination: not guaranteed (may loop)

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

\rightarrow uses simplification rules
\rightarrow (almost) blindly from left to right
\rightarrow until no rule is applicable.
termination: not guaranteed (may loop)
confluence: not guaranteed (result may depend on which rule is used first)

Control

\rightarrow Equations turned into simplifaction rules with [simp] attribute

Control

\rightarrow Equations turned into simplifaction rules with [simp] attribute
\rightarrow Adding/deleting equations locally: apply (simp add: <rules $>$) and apply (simp del: <rules>)

Control

\rightarrow Equations turned into simplifaction rules with [simp] attribute
\rightarrow Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
\rightarrow Using only the specified set of equations: apply (simp only: <rules $>$)

Demo

ISAR

A Language for Structured Proofs

ISAR

apply scripts

\rightarrow unreadable

ISAR

apply scripts

\rightarrow unreadable
\rightarrow hard to maintain

ISAR

apply scripts

$\rightarrow \quad$ unreadable
\rightarrow hard to maintain
$\rightarrow \quad$ do not scale

ISAR

apply scripts

\rightarrow unreadable
\rightarrow hard to maintain
\rightarrow do not scale

No structure.

ISAR

apply scripts

\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain
$\rightarrow \quad$ do not scale

No structure.

ISAR

apply scripts

\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain \rightarrow Explaining deeper insights?
$\rightarrow \quad$ do not scale

No structure.

ISAR

apply scripts

\rightarrow unreadable	\rightarrow Elegance?
\rightarrow hard to maintain	\rightarrow Explaining deeper insights?
\rightarrow do not scale	\rightarrow Large developments?

No structure.

What about..
\rightarrow Elegance?
\rightarrow Explaining deeper insights?
\rightarrow Large developments?

ISAR

apply scripts

\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain $\quad \rightarrow \quad$ Explaining deeper insights?
\rightarrow do not scale $\quad \rightarrow \quad$ Large developments?

No structure.

What about..

A TYPICAL ISAR PROOF

proof
assume formula 0_{0}
have formula a_{1} by simp
\vdots
have formula ${ }_{n}$ by blast
show formula $_{n+1}$ by ...
qed

A TYPICAL ISAR PROOF

proof
assume formula 0_{0}
have formula ${ }_{1}$ by simp
\vdots
have formula ${ }_{n}$ by blast
show formula $_{n+1}$ by ...
qed

proves formula $a_{0} \Longrightarrow$ formula $_{n+1}$

A TYPICAL ISAR PROOF

$$
\begin{aligned}
& \text { proof } \\
& \text { assume } \text { formula }_{0} \\
& \text { have }{\text { formula } a_{1}} \text { by simp } \\
& \vdots \\
& \text { have } \text { formula }_{n} \text { by blast } \\
& \text { show }{\text { formula } a_{n+1}} \text { by } \ldots \\
& \text { qed }
\end{aligned}
$$

$$
\text { proves formula } a_{0} \Longrightarrow \text { formula }_{n+1}
$$

(analogous to assumes/shows in lemma statements)

ISAR CORE SYNTAX

proof $=$ proof [method] statement* qed by method

ISAR CORE SYNTAX

proof $=$ proof [method] statement* qed by method

```
method = (simp ...) | (blast ...) | (rule ...) | ...
```


ISAR CORE SYNTAX

proof $=$ proof [method] statement* qed by method

```
method = (simp ...)|(blast ...) | (rule ...)| ...
statement = fix variables
    assume proposition
        (\Longrightarrow)
    [from name}\mp@subsup{}{}{+}\mathrm{ ] (have | show) proposition proof
        next
    (separates subgoals)
```


ISAR CORE SYNTAX

$$
\begin{aligned}
\text { proof }= & \text { proof }[\text { method }] \text { statement* qed } \\
& \mid \text { by method }
\end{aligned}
$$

```
method = (simp ...) | (blast ...)|(rule ...)| ...
statement = fix variables
    | assume proposition
        (\Longrightarrow)
            [from name'] (have | show) proposition proof
            next
            (separates subgoals)
proposition = [name:] formula
```


PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
assume A: " A "
from A show " A " by assumption next

PROOF AND QED

proof [method] statement* qed
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
$\rightarrow \quad$ proof $(<$ method $>)$ applies method to the stated goal

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof $(<$ method $>)$ applies method to the stated goal
\rightarrow proof applies a single rule that fits

PROOF AND QED

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof $(<$ method $>)$ applies method to the stated goal
\rightarrow proof
\rightarrow proof - does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "
\rightarrow We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.

> lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "[$ prove $]$ proof $($ rule conjl) [state]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]
assume A: "A" [state]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.

```
lemma "\}\A;B\rrbracket\LongrightarrowA\wedgeB"[prove]
proof (rule conjl) [state]
    assume A: "A" [state]
    from A [chain]
```


The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.

```
lemma " }\llbracketA;B\rrbracket\LongrightarrowA\wedgeB"[prove]
proof (rule conjl) [state]
    assume A: "A" [state]
    from A [chain] show "A" [prove] by assumption [state]
next [state] ...
```


Have

Can be used to make intermediate steps.

Example:

Have

Can be used to make intermediate steps.

Example:

```
Iemma "( \(x::\) nat \()+1=1+x\) "
proof
    have A : " \(x+1=\) Suc \(x\) " by simp
    have B : " \(1+x=\) Suc \(x\) " by simp
    show " \(x+1=1+x\) " by (simp only: A B)
qed
```

Demo: Isar Proofs

We have learned today ...

\rightarrow Introducing new Types

We have learned today ...

\rightarrow Introducing new Types
\rightarrow Equations and Term Rewriting

We have learned today ...

\rightarrow Introducing new Types
\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems

We have learned today ...

\rightarrow Introducing new Types
\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems
\rightarrow Term Rewriting in Isabelle

We have learned today ...

\rightarrow Introducing new Types
\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems
\rightarrow Term Rewriting in Isabelle
\rightarrow First structured proofs (Isar)

Exercises

\rightarrow use typedef to define a new type v with exactly one element.
\rightarrow define a constant u of type v
\rightarrow show that every element of v is equal to u
\rightarrow design a set of rules that turns formulae with $\wedge, \vee, \longrightarrow, \neg$ into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)
\rightarrow prove those rules in Isabelle
\rightarrow use simp only with these rules on $(\neg B \longrightarrow C) \longrightarrow A \longrightarrow B$

