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CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs
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LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3



LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3-A



LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3-B



LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3-C



THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.
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THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.
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HOW TYPEDEF WORKS
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EXAMPLE: PAIRS

(α, β) Prod

➀ Pick existing type:

α ⇒ β ⇒ bool

➁ Identify subset:
(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

EXAMPLE: PAIRS 8
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DEMO: INTRODUCTING NEW TYPES
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TERM REWRITING
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THE PROBLEM

Given a set of equations

l1 = r1

l2 = r2

...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)
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TERM REWRITING: THE IDEA

use equations as reduction rules

l1 −→ r1

l2 −→ r2

...

ln −→ rn

decide l = r by deciding l
∗

←→ r

TERM REWRITING: THE IDEA 12



ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity

n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure
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HOW TO DECIDE l
∗

←→ r

Same idea as for β:

look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.
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∗
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CONFLUENCE

s

x y

t
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∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence
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t
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Fact: local confluence and termination =⇒ confluence
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TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:

−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable
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WHEN IS −→ TERMINATING?

Basic Idea:

when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN
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TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)
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CONTROL

➜ Equations turned into simplifaction rules with [simp] attribute

➜ Adding/deleting equations locally:
apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:
apply (simp only: <rules>)

CONTROL 19
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ISAR

A LANGUAGE FOR STRUCTURED PROOFS

21



ISAR

apply scripts

What about..

➜ unreadable

➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!
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ISAR

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!
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A TYPICAL ISAR PROOF

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)
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ISAR CORE SYNTAX

proof = proof [method] statement∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (rule . . . ) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula
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PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”

proof (rule conjI)
assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal
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PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
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qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-H



HOW DO I KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.
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THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .
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from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain]

show ”A” [prove] by assumption [state]
next [state] . . .
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THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .
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HAVE

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x + 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x + 1 = 1 + x” by (simp only: A B)

qed

HAVE 28



HAVE

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x + 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x + 1 = 1 + x” by (simp only: A B)

qed
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WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)
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WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)
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EXERCISES

➜ use typedef to define a new type v with exactly one element.

➜ define a constant u of type v

➜ show that every element of v is equal to u

➜ design a set of rules that turns formulae with ∧,∨,−→,¬

into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)

➜ prove those rules in Isabelle

➜ use simp only with these rules on (¬B −→ C) −→ A −→ B
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