
NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

−→

1

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

CONTENT 2

LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3

LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3-A

LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3-B

LAST TIME ON HOL

➜ Defining HOL

➜ Higher Order Abstract Syntax

➜ Deriving proof rules

➜ More automation

LAST TIME ON HOL 3-C

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING THEOREMS 4

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING THEOREMS 4-A

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING THEOREMS 4-B

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING THEOREMS 4-C

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

➜ Axioms:

Expample: axioms refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: defs inj def: ”inj f ≡ ∀x y. f x = f y −→ x = y”

➜ Proofs:

Example: lemma ”inj (λx. x + 1)”

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING THEOREMS 4-D

THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

THE THREE BASIC WAYS OF INTRODUCING TYPES 5

THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

THE THREE BASIC WAYS OF INTRODUCING TYPES 5-A

THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

THE THREE BASIC WAYS OF INTRODUCING TYPES 5-B

THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

THE THREE BASIC WAYS OF INTRODUCING TYPES 5-C

THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>

Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

THE THREE BASIC WAYS OF INTRODUCING TYPES 5-D

THE THREE BASIC WAYS OF INTRODUCING TYPES

➜ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

➜ types: by abbreviation

Example: types α rel = ”α ⇒ α ⇒ bool”

Introduces abbreviation rel for existing type α ⇒ α ⇒ bool

Type abbreviations are immediatly expanded internally

➜ typedef: by definiton as a set

Example: typdef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.

The proof shows that the set on the rhs in non-empty.

THE THREE BASIC WAYS OF INTRODUCING TYPES 5-E

HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

HOW TYPEDEF WORKS 6

HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

HOW TYPEDEF WORKS 6-A

HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

HOW TYPEDEF WORKS 6-B

HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

HOW TYPEDEF WORKS 6-C

HOW TYPEDEF WORKS

'

&

$

%

new type

existing type

�
Abs

-
Rep

HOW TYPEDEF WORKS 7

EXAMPLE: PAIRS

(α, β) Prod

➀ Pick existing type:

α ⇒ β ⇒ bool

➁ Identify subset:
(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

EXAMPLE: PAIRS 8

EXAMPLE: PAIRS

(α, β) Prod

➀ Pick existing type: α ⇒ β ⇒ bool

➁ Identify subset:

(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

EXAMPLE: PAIRS 8-A

EXAMPLE: PAIRS

(α, β) Prod

➀ Pick existing type: α ⇒ β ⇒ bool

➁ Identify subset:
(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

EXAMPLE: PAIRS 8-B

EXAMPLE: PAIRS

(α, β) Prod

➀ Pick existing type: α ⇒ β ⇒ bool

➁ Identify subset:
(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

EXAMPLE: PAIRS 8-C

EXAMPLE: PAIRS

(α, β) Prod

➀ Pick existing type: α ⇒ β ⇒ bool

➁ Identify subset:
(α, β) Prod = {f. ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:

• define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead

EXAMPLE: PAIRS 8-D

DEMO: INTRODUCTING NEW TYPES

9

TERM REWRITING

10

THE PROBLEM

Given a set of equations

l1 = r1

l2 = r2

...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)

THE PROBLEM 11

THE PROBLEM

Given a set of equations

l1 = r1

l2 = r2

...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)

THE PROBLEM 11-A

THE PROBLEM

Given a set of equations

l1 = r1

l2 = r2

...

ln = rn

does equation l = r hold?

Applications in:

➜ Mathematics (algebra, group theory, etc)

➜ Functional Programming (model of execution)

➜ Theorem Proving (dealing with equations, simplifying statements)

THE PROBLEM 11-B

TERM REWRITING: THE IDEA

use equations as reduction rules

l1 −→ r1

l2 −→ r2

...

ln −→ rn

decide l = r by deciding l
∗

←→ r

TERM REWRITING: THE IDEA 12

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity

n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-A

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-B

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-C

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-D

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-E

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-F

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-G

ARROW CHEAT SHEET

0
−→ = {(x, y)|x = y} identity
n+1
−→ =

n
−→ ◦ −→ n+1 fold composition

+
−→ =

⋃
i>0

i
−→ transitive closure

∗

−→ =
+
−→ ∪

0
−→ reflexive transitive closure

=
−→ = −→ ∪

0
−→ reflexive closure

−1
−→ = {(y, x)|x −→ y} inverse

←− =
−1
−→ inverse

←→ = ←− ∪ −→ symmetric closure

+
←→ =

⋃
i>0

i
←→ transitive symmetric closure

∗

←→ =
+
←→ ∪

0
←→ reflexive transitive symmetric closure

ARROW CHEAT SHEET 13-H

HOW TO DECIDE l
∗

←→ r

Same idea as for β:

look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?

If l
∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-A

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.

If l
∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-B

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n?

No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-C

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-D

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-E

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-F

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-G

HOW TO DECIDE l
∗

←→ r

Same idea as for β: look for n such that l
∗

−→ n and r
∗

−→ n

Does this always work?
If l

∗

−→ n and r
∗

−→ n then l
∗

←→ r. Ok.
If l

∗

←→ r, will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗

←→ g x because f x −→ a←− f (g x) −→ b←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗

←→ r =⇒ ∃n. l
∗

−→ n ∧ r
∗

−→ n

Fact: −→ is Church-Rosser iff it is confluent.

HOW TO DECIDE l
∗

←→ r 14-H

CONFLUENCE

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence
s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

CONFLUENCE 15

CONFLUENCE

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence
s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

CONFLUENCE 15-A

CONFLUENCE

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence
s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

CONFLUENCE 15-B

CONFLUENCE

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence
s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

CONFLUENCE 15-C

TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:

−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

TERMINATION 16

TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent

−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

TERMINATION 16-A

TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

TERMINATION 16-B

TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

TERMINATION 16-C

TERMINATION

−→ is terminating if there are no infinite reduction chains

−→ is normalizing if each element has a normal form

−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

TERMINATION 16-D

WHEN IS −→ TERMINATING?

Basic Idea:

when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17

WHEN IS −→ TERMINATING?

Basic Idea: when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17-A

WHEN IS −→ TERMINATING?

Basic Idea: when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example:

f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17-B

WHEN IS −→ TERMINATING?

Basic Idea: when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17-C

WHEN IS −→ TERMINATING?

Basic Idea: when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17-D

WHEN IS −→ TERMINATING?

Basic Idea: when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17-E

WHEN IS −→ TERMINATING?

Basic Idea: when the ri are in some way simpler then the li

More formally: −→ is terminating when
there is a well founded order < in which ri < li for all rules.
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x, g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = numer of function symbols in s

➀ g x <r f (g x) and f x <r g (f x)

➁ <r is well founded, because < is well founded on IN

WHEN IS −→ TERMINATING? 17-F

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

TERM REWRITING IN ISABELLE 18

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

TERM REWRITING IN ISABELLE 18-A

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

TERM REWRITING IN ISABELLE 18-B

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

TERM REWRITING IN ISABELLE 18-C

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

TERM REWRITING IN ISABELLE 18-D

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

➜ uses simplification rules

➜ (almost) blindly from left to right

➜ until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

TERM REWRITING IN ISABELLE 18-E

CONTROL

➜ Equations turned into simplifaction rules with [simp] attribute

➜ Adding/deleting equations locally:
apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:
apply (simp only: <rules>)

CONTROL 19

CONTROL

➜ Equations turned into simplifaction rules with [simp] attribute

➜ Adding/deleting equations locally:
apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:
apply (simp only: <rules>)

CONTROL 19-A

CONTROL

➜ Equations turned into simplifaction rules with [simp] attribute

➜ Adding/deleting equations locally:
apply (simp add: <rules>) and apply (simp del: <rules>)

➜ Using only the specified set of equations:
apply (simp only: <rules>)

CONTROL 19-B

DEMO

20

ISAR

A LANGUAGE FOR STRUCTURED PROOFS

21

ISAR

apply scripts

What about..

➜ unreadable

➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!

ISAR 22

ISAR

apply scripts

What about..

➜ unreadable

➜ Elegance?

➜ hard to maintain

➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!

ISAR 22-A

ISAR

apply scripts

What about..

➜ unreadable

➜ Elegance?

➜ hard to maintain

➜ Explaining deeper insights?

➜ do not scale

➜ Large developments?

No structure. Isar!

ISAR 22-B

ISAR

apply scripts

What about..

➜ unreadable

➜ Elegance?

➜ hard to maintain

➜ Explaining deeper insights?

➜ do not scale

➜ Large developments?

No structure.

Isar!

ISAR 22-C

ISAR

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain

➜ Explaining deeper insights?

➜ do not scale

➜ Large developments?

No structure.

Isar!

ISAR 22-D

ISAR

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale

➜ Large developments?

No structure.

Isar!

ISAR 22-E

ISAR

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure.

Isar!

ISAR 22-F

ISAR

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!

ISAR 22-G

A TYPICAL ISAR PROOF

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

A TYPICAL ISAR PROOF 23

A TYPICAL ISAR PROOF

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

A TYPICAL ISAR PROOF 23-A

A TYPICAL ISAR PROOF

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

A TYPICAL ISAR PROOF 23-B

ISAR CORE SYNTAX

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

ISAR CORE SYNTAX 24

ISAR CORE SYNTAX

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

ISAR CORE SYNTAX 24-A

ISAR CORE SYNTAX

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

ISAR CORE SYNTAX 24-B

ISAR CORE SYNTAX

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

ISAR CORE SYNTAX 24-C

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”

proof (rule conjI)
assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-A

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-B

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next

assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-C

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-D

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-E

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-F

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-G

PROOF AND QED

proof [method] statement∗ qed

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

PROOF AND QED 25-H

HOW DO I KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

HOW DO I KNOW WHAT TO ASSUME AND SHOW? 26

HOW DO I KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

HOW DO I KNOW WHAT TO ASSUME AND SHOW? 26-A

HOW DO I KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

HOW DO I KNOW WHAT TO ASSUME AND SHOW? 26-B

HOW DO I KNOW WHAT TO ASSUME AND SHOW?

Look at the proof state!

lemma ”[[A; B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

HOW DO I KNOW WHAT TO ASSUME AND SHOW? 26-C

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27-A

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27-B

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B”

[prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27-C

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]

proof (rule conjI) [state]
assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27-D

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27-E

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]

from A [chain] show ”A” [prove] by assumption [state]
next [state] . . .

THE THREE MODES OF ISAR 27-F

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain]

show ”A” [prove] by assumption [state]
next [state] . . .

THE THREE MODES OF ISAR 27-G

THE THREE MODES OF ISAR

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A; B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

THE THREE MODES OF ISAR 27-H

HAVE

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x + 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x + 1 = 1 + x” by (simp only: A B)

qed

HAVE 28

HAVE

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x + 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x + 1 = 1 + x” by (simp only: A B)

qed

HAVE 28-A

DEMO: ISAR PROOFS

29

WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

WE HAVE LEARNED TODAY ... 30

WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

WE HAVE LEARNED TODAY ... 30-A

WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

WE HAVE LEARNED TODAY ... 30-B

WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

WE HAVE LEARNED TODAY ... 30-C

WE HAVE LEARNED TODAY ...

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

WE HAVE LEARNED TODAY ... 30-D

EXERCISES

➜ use typedef to define a new type v with exactly one element.

➜ define a constant u of type v

➜ show that every element of v is equal to u

➜ design a set of rules that turns formulae with ∧,∨,−→,¬

into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)

➜ prove those rules in Isabelle

➜ use simp only with these rules on (¬B −→ C) −→ A −→ B

EXERCISES 31

