

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

1

CONTENT

→ Intro & motivation, getting started with Isabelle

→ Foundations & Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
- ➔ Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

→ Defining HOL

- → Defining HOL
- → Higher Order Abstract Syntax

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

→ Axioms:

Expample: **axioms** refl: "t = t"

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **defs** inj_def: "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ "

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **defs** inj_def: "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ "

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **defs** inj_def: "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ "

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

- → typedecl: by name only
 - Example: typedecl names

→ typedecl: by name only

Example: **typedecl** names

Introduces new type names without any further assumptions

→ typedecl: by name only

Example: **typedecl** names

Introduces new type names without any further assumptions

→ types: by abbreviation

Example: types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "

→ typedecl: by name only

Example: **typedecl** names

Introduces new type names without any further assumptions

→ types: by abbreviation

Example:types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediatly expanded internally

→ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

→ types: by abbreviation

Example:types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediatly expanded internally

→ **typedef**: by definiton as a set

Example: **typdef** new_type = "{some set}" <proof>

→ typedecl: by name only

Example: typedecl names

Introduces new type names without any further assumptions

→ types: by abbreviation

Example:types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediatly expanded internally

→ typedef: by definiton as a set

Example: **typdef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty.

HOW TYPEDEF WORKS

HOW TYPEDEF WORKS

HOW TYPEDEF WORKS

 (α,β) Prod

① Pick existing type:

 (α,β) Prod

- D Pick existing type: $\alpha \Rightarrow \beta \Rightarrow \mathsf{bool}$
- ② Identify subset:

 (α,β) Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

 $(\alpha,\beta) \operatorname{\mathsf{Prod}} = \{f. \ \exists a \ b. \ f = \lambda(x::\alpha) \ (y::\beta). \ x = a \land y = b\}$

③ We get from Isabelle:

 $(\alpha,\beta) \operatorname{Prod}$

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

 $(\alpha,\beta) \operatorname{\mathsf{Prod}} = \{f. \ \exists a \ b. \ f = \lambda(x::\alpha) \ (y::\beta). \ x = a \land y = b\}$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- ④ We now can:

 $(\alpha,\beta) \operatorname{Prod}$

- D Pick existing type: $\alpha \Rightarrow \beta \Rightarrow \mathsf{bool}$
- ② Identify subset:

 $(\alpha,\beta) \operatorname{\mathsf{Prod}} = \{f. \ \exists a \ b. \ f = \lambda(x::\alpha) \ (y::\beta). \ x = a \land y = b\}$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- ④ We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

DEMO: INTRODUCTING NEW TYPES

TERM REWRITING

THE **PROBLEM**

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

THE **P**ROBLEM

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

does equation l = r hold?

THE **P**ROBLEM

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

TERM REWRITING: THE IDEA

use equations as reduction rules

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

ARROW CHEAT SHEET

$$\stackrel{0}{\longrightarrow} = \{(x,y)|x=y\} \quad \text{identity}$$

ARROW CHEAT SHEET

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{ identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & \text{ n+1 fold composition} \end{array}$$

ARROW CHEAT SHEET

$\overset{0}{\longrightarrow}$	=	$\{(x,y) x=y\}$	identity
$\xrightarrow{n+1}$	=	$\xrightarrow{n} \circ \longrightarrow$	n+1 fold composition
$\xrightarrow{+}$	=	$\bigcup_{i>0} \xrightarrow{i}$	transitive closure

		$\{(x,y) x=y\}$	identity
$\xrightarrow{n+1}$	=	$\stackrel{n}{\longrightarrow} \circ \longrightarrow$	n+1 fold composition
$\xrightarrow{+}$	=	$\bigcup_{i>0} \xrightarrow{i}$	transitive closure
$\xrightarrow{*}$	—	$\stackrel{+}{\longrightarrow} \bigcup \stackrel{0}{\longrightarrow}$	reflexive transitive closure

$\xrightarrow[n+1]{n+1}$	=	$ \{ (x, y) x = y \} $ $ \xrightarrow{n} \circ \longrightarrow $
$\xrightarrow{+}$	=	$\bigcup_{i>0} \stackrel{i}{\longrightarrow}$
$\xrightarrow{*}$	=	$\stackrel{+}{\longrightarrow} \bigcup \stackrel{0}{\longrightarrow}$
$\xrightarrow{=}$	=	$\longrightarrow \bigcup \stackrel{0}{\longrightarrow}$

identity n+1 fold composition transitive closure reflexive transitive closure reflexive closure

		$ \begin{array}{c} \{(x,y) x=y\} \\ \xrightarrow{n} \circ \longrightarrow \end{array} \end{array} $	identity n+1 fold composition
		$ \begin{array}{ccc} \underbrace{\bigcup_{i>0} \xrightarrow{i}} \\ \xrightarrow{+} & \bigcup \xrightarrow{0} \end{array} $	transitive closure refexive transitive closure
		$\longrightarrow \bigcup \stackrel{0}{\longrightarrow}$	refexive closure
$\xrightarrow{-1}$	=	$\{(y,x) x\longrightarrow y\}$	inverse

		$ \begin{array}{c} \{(x,y) x=y\} \\ \xrightarrow{n} \circ \longrightarrow \end{array} \end{array} $	identity n+1 fold composition
		$\bigcup_{i>0} \stackrel{i}{\longrightarrow}$	transitive closure
$\overset{*}{\longrightarrow}$	=	$\stackrel{+}{\longrightarrow} \bigcup \stackrel{0}{\longrightarrow}$	reflexive transitive closure
$\xrightarrow{=}$	=	$\longrightarrow \cup \stackrel{0}{\longrightarrow}$	reflexive closure
$\xrightarrow{-1}$	=	$\{(y,x) x\longrightarrow y\}$	inverse
<i>~</i>	=	$\xrightarrow{-1}$	inverse

$\xrightarrow{0} \xrightarrow{n+1}$		$ \begin{array}{c} \{(x,y) x=y\} \\ \xrightarrow{n} \circ \longrightarrow \end{array} \end{array} $	identity n+1 fold composition
$\xrightarrow{+}$	=	$\bigcup_{i>0} \xrightarrow{i}$	transitive closure
$\overset{*}{\longrightarrow}$	=	$\stackrel{+}{\longrightarrow} \bigcup \stackrel{0}{\longrightarrow}$	reflexive transitive closure
$\xrightarrow{=}$	=	$\longrightarrow \bigcup \stackrel{0}{\longrightarrow}$	refexive closure
$\xrightarrow{-1}$	=	$\{(y,x) x\longrightarrow y\}$	inverse
←	=	$\xrightarrow{-1}$	inverse
\longleftrightarrow	=	$\longleftrightarrow \bigcup \longrightarrow$	symmetric closure

		$ \begin{array}{c} \{(x,y) x=y\} \\ \xrightarrow{n} \circ \longrightarrow \end{array} \end{array} $	identity n+1 fold composition
$\overset{*}{\longrightarrow}$	=	$ \begin{array}{cccc} & \stackrel{i}{\longrightarrow} \\ & \stackrel{+}{\longrightarrow} & \bigcup \stackrel{0}{\longrightarrow} \\ & \longrightarrow & \bigcup \stackrel{0}{\longrightarrow} \\ \end{array} $	transitive closure reflexive transitive closure reflexive closure
$\xrightarrow{-1}$	=	$\{(y,x) x\longrightarrow y\}$	inverse
$\xrightarrow{-1}$			inverse inverse
<i>~</i>	=		

Same idea as for β :

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*?

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If
$$l \xrightarrow{*} n$$
 and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.
If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If
$$l \xrightarrow{*} n$$
 and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.
If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$
 $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If
$$l \xrightarrow{*} n$$
 and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.
If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$ But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If
$$l \xrightarrow{*} n$$
 and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.
If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Example:

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$
 $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$
But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If
$$l \xrightarrow{*} n$$
 and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.
If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Example:

Rules:
$$f x \longrightarrow a, g x \longrightarrow b, f(g x) \longrightarrow b$$
 $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a$ $a \leftarrow f(g x) \longrightarrow b \leftarrow g x$ But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Problem:

is a given set of reduction rules confluent?

Problem:

is a given set of reduction rules confluent?

undecidable

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination \implies confluence

- \longrightarrow is terminating if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

- \longrightarrow is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent

- \longrightarrow is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

- \longrightarrow is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

- \longrightarrow is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Basic Idea:

Basic Idea: when the r_i are in some way simpler then the l_i

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: \longrightarrow is terminating when

there is a well founded order < in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: \longrightarrow is terminating when there is a well founded order < in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example: $f(g|x) \longrightarrow g|x$, $g(f|x) \longrightarrow f|x$

This system always terminates. Reduction order:

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: \longrightarrow is terminating when there is a well founded order < in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g|x) \longrightarrow g|x, g|(f|x) \longrightarrow f|x$$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = numer of function symbols in s

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: \longrightarrow is terminating when there is a well founded order < in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x$$
, $g(f x) \longrightarrow f x$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = numer of function symbols in s

①
$$g x <_r f (g x)$$
 and $f x <_r g (f x)$

Basic Idea: when the r_i are in some way simpler then the l_i

More formally: \longrightarrow is terminating when there is a well founded order < in which $r_i < l_i$ for all rules. (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g|x) \longrightarrow g|x$$
, $g(f|x) \longrightarrow f|x$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = numer of function symbols in s

①
$$g x <_r f (g x)$$
 and $f x <_r g (f x)$

 ${\mathbb 2}_{-r}$ is well founded, because < is well founded on ${\mathbb N}$

Term rewriting engine in Isabelle is called Simplifier

Term rewriting engine in Isabelle is called Simplifier

apply simp

→ uses simplification rules

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- \rightarrow until no rule is applicable.

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.

termination: not guaranteed (may loop)

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.
 - termination: not guaranteed (may loop)
 - **confluence:** not guaranteed (result may depend on which rule is used first)

CONTROL

→ Equations turned into simplifaction rules with [simp] attribute

CONTROL

- → Equations turned into simplifaction rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)

CONTROL

- → Equations turned into simplifaction rules with [simp] attribute
- Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- Using only the specified set of equations:
 apply (simp only: <rules>)

DEMO

A LANGUAGE FOR STRUCTURED PROOFS

apply scripts

→ unreadable

apply scripts

- → unreadable
- → hard to maintain

apply scripts

- → unreadable
- → hard to maintain
- → do not scale

apply scripts

- → unreadable
- → hard to maintain
- → do not scale

apply scripts What about..

- → unreadable → Elegance?
- → hard to maintain
- → do not scale

apply scripts

What about...

- unreadable Elegance? **→** \rightarrow
- hard to maintain \rightarrow
- do not scale **→**

- Explaining deeper insights? →

apply scripts

What about...

- unreadable \rightarrow \rightarrow
- hard to maintain \rightarrow
- do not scale \rightarrow

- Elegance?
- Explaining deeper insights? →
- Large developments? →

apply scripts

What about...

- unreadable \rightarrow \rightarrow
- hard to maintain \rightarrow
- do not scale \rightarrow

- Elegance?
- Explaining deeper insights? **→**
- Large developments? →

No structure.

Isar!

A TYPICAL ISAR PROOF

proof

assume formula₀
have formula₁ by simp

...
have formula_n by blast
show formula_{n+1} by ...
qed

A TYPICAL ISAR PROOF

proof

assume $formula_0$ have $formula_1$ by simp have $formula_n$ by blast show $formula_{n+1}$ by ... qed

proves $formula_0 \Longrightarrow formula_{n+1}$

A TYPICAL ISAR PROOF

proof

assume formula₀
have formula₁ by simp
...
have formula_n by blast
show formula_{n+1} by ...
qed

proves $formula_0 \Longrightarrow formula_{n+1}$

(analogous to **assumes/shows** in lemma statements)

proof = **proof** [method] statement* **qed** | **by** method

proof = **proof** [method] statement* **qed** | **by** method

```
method = (simp ...) | (blast ...) | (rule ...) | ...
```

```
proof = proof [method] statement* qed
| by method
```

```
method = (simp ...) | (blast ...) | (rule ...) | ...
```

```
statement = fix variables(\land)| assume proposition(\Longrightarrow)| [from name+] (have | show) proposition proof| next(separates subgoals)
```

```
proof = proof [method] statement* qed
        by method
method = (simp ...) | (blast ...) | (rule ...) | ...
statement = fix variables
                                          (\Lambda)
             assume proposition (\Longrightarrow)
             [from name<sup>+</sup>] (have | show) proposition proof
                                          (separates subgoals)
             next
```

proposition = [name:] formula

proof [method] statement* qed

 $\textbf{lemma "}[\![A;B]\!] \Longrightarrow A \land B"$

proof [method] statement* qed

lemma " $[\![A; B]\!] \Longrightarrow A \land B$ " **proof** (rule conjl)

proof [method] statement* qed

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " proof (rule conjl) assume A: "A" from A show "A" by assumption

```
lemma "[A; B] \implies A \land B"

proof (rule conjl)

assume A: "A"

from A show "A" by assumption

next
```

```
lemma "[A; B] \implies A \land B"

proof (rule conjl)

assume A: "A"

from A show "A" by assumption

next

assume B: "B"

from B show "B" by assumption
```

```
lemma "[\![A; B]\!] \Longrightarrow A \land B"
proof (rule conjl)
assume A: "A"
from A show "A" by assumption
next
assume B: "B"
from B show "B" by assumption
qed
```

proof [method] statement* qed

```
lemma "[\![A; B]\!] \Longrightarrow A \land B"
proof (rule conjl)
assume A: "A"
from A show "A" by assumption
next
assume B: "B"
from B show "B" by assumption
qed
```

→ proof (<method>) applies method to the stated goal

```
lemma "[\![A; B]\!] \Longrightarrow A \land B"
proof (rule conjl)
assume A: "A"
from A show "A" by assumption
next
assume B: "B"
from B show "B" by assumption
qed
```

- → proof (<method>) applies method to the stated goal
- → proof applies a single rule that fits

proof [method] statement* qed

```
lemma "[A; B] \implies A \land B"
proof (rule conjl)
assume A: "A"
from A show "A" by assumption
next
assume B: "B"
from B show "B" by assumption
```

qed

- → proof (<method>) applies method to the stated goal
- → proof applies a single rule that fits
- → proof does nothing to the goal

Look at the proof state!

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " proof (rule conjl)

Look at the proof state!

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " proof (rule conjl)

→ proof (rule conjl) changes proof state to
1. [[A; B]] ⇒ A
2. [[A; B]] ⇒ B

Look at the proof state!

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " proof (rule conjl)

→ proof (rule conjl) changes proof state to
1. [[A; B]] ⇒ A
2. [[A; B]] ⇒ B

→ so we need 2 shows: **show** "A" and **show** "B"

Look at the proof state!

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " proof (rule conjl)

- → proof (rule conjl) changes proof state to
 1. [[A; B]] ⇒ A
 2. [[A; B]] ⇒ B
- → so we need 2 shows: **show** "A" and **show** "B"
- → We are allowed to assume A, because A is in the assumptions of the proof state.

THE THREE MODES OF ISAR

→ [prove]:

goal has been stated, proof needs to follow.

THE THREE MODES OF ISAR

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

 $\textbf{lemma "}[\![A;B]\!] \Longrightarrow A \land B"$

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

$\textbf{lemma "}\llbracket A;B \rrbracket \Longrightarrow A \land B \texttt{" [prove]}$

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " [prove] proof (rule conjl) [state]

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

lemma " $\llbracket A; B \rrbracket \implies A \land B$ " [prove] proof (rule conjl) [state] assume A: "A" [state]

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

```
lemma "\llbracket A; B \rrbracket \implies A \land B" [prove]
proof (rule conjl) [state]
assume A: "A" [state]
from A [chain]
```

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

```
lemma "[A; B] \implies A \land B" [prove]
proof (rule conjl) [state]
assume A: "A" [state]
from A [chain] show "A" [prove] by assumption [state]
next [state] ...
```

HAVE

Can be used to make intermediate steps.

Example:

HAVE

Can be used to make intermediate steps.

Example:

lemma "(x ::: nat) + 1 = 1 + x" proof have A: "x + 1 = Suc x" by simp have B: "1 + x = Suc x" by simp show "x + 1 = 1 + x" by (simp only: A B) qed

DEMO: ISAR PROOFS

→ Introducing new Types

- → Introducing new Types
- → Equations and Term Rewriting

- → Introducing new Types
- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Introducing new Types
- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

- → Introducing new Types
- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle
- → First structured proofs (Isar)

Exercises

- \rightarrow use **typedef** to define a new type v with exactly one element.
- \rightarrow define a constant u of type v
- \rightarrow show that every element of v is equal to u
- → design a set of rules that turns formulae with ∧, ∨, →, ¬
 into disjunctive normal form
 (= disjunction of conjunctions with negation only directly on variables)
- → prove those rules in Isabelle
- → use simp only with these rules on $(\neg B \longrightarrow C) \longrightarrow A \longrightarrow B$