
NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

−→

1



CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

CONTENT 2



LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

LAST TIME 3



LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

LAST TIME 3-A



LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

LAST TIME 3-B



LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

LAST TIME 3-C



LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)

LAST TIME 3-D



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4-A



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4-B



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4-C



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4-D



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4-E



APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)

APPLYING A REWRITE RULE 4-F



CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if

➜ σ l = s and

➜ σ P1, . . . , σ Pn are provable by rewriting.

CONDITIONAL TERM REWRITING 5



CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if

➜ σ l = s and

➜ σ P1, . . . , σ Pn are provable by rewriting.

CONDITIONAL TERM REWRITING 5-A



REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify, but do not use assumptions

(simp (no asm simp)) use, but do not simplify assumptions

REWRITING WITH ASSUMPTIONS 6



REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify, but do not use assumptions

(simp (no asm simp)) use, but do not simplify assumptions

REWRITING WITH ASSUMPTIONS 6-A



REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify, but do not use assumptions

(simp (no asm simp)) use, but do not simplify assumptions

REWRITING WITH ASSUMPTIONS 6-B



PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True r = False s = True

PREPROCESSING 7



PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True r = False s = True

PREPROCESSING 7-A



PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True r = False s = True

PREPROCESSING 7-B



DEMO

8



CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CASE SPLITTING WITH SIMP 9



CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CASE SPLITTING WITH SIMP 9-A



CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CASE SPLITTING WITH SIMP 9-B



CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CASE SPLITTING WITH SIMP 9-C



CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CASE SPLITTING WITH SIMP 9-D



CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

CONGRUENCE RULES 10



CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

CONGRUENCE RULES 10-A



CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

CONGRUENCE RULES 10-B



CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

CONGRUENCE RULES 10-C



CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

CONGRUENCE RULES 10-D



CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′

CONGRUENCE RULES 10-E



MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

MORE CONGRUENCE 11



MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

MORE CONGRUENCE 11-A



MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

MORE CONGRUENCE 11-B



MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

MORE CONGRUENCE 11-C



MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]

MORE CONGRUENCE 11-D



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example:

b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12-A



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12-B



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12-C



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

AC RULES 13



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

AC RULES 13-A



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

AC RULES 13-B



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

AC RULES 13-C



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

AC RULES 13-D



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

AC RULES 13-E



DEMO

14



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-A



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-B



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-C



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-D



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-E



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b)

,

so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b)

,

so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16-A



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b)

,

so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16-B



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b),

so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16-C



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16-D



COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16-E



DEMO: WALDMEISTER

17



ORTHOGONAL REWRITING SYSTEMS

Definitions:

A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS 18



ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS 18-A



ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS 18-B



ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS 18-C



ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS 18-D



ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS 18-E



LAST TIME ON ISAR

➜ basic syntax

➜ proof and qed

➜ assume and show

➜ from and have

➜ the three modes of Isar

LAST TIME ON ISAR 19



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-A



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-B



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-C



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-D



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-E



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-F



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

BACKWARD AND FORWARD 20-G



FIX AND OBTAIN

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

FIX AND OBTAIN 21



FIX AND OBTAIN

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

FIX AND OBTAIN 21-A



FIX AND OBTAIN

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

FIX AND OBTAIN 21-B



FIX AND OBTAIN

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

FIX AND OBTAIN 21-C



DEMO

22



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23-A



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23-B



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23-C



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23-D



FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23-E



MOREOVER AND ULTIMATELY

have X1: P1 . . .

have P1 . . .

have X2: P2 . . .

moreover have P2 . . .

...

...

have Xn: Pn . . .

moreover have Pn . . .

from X1 . . .Xn show . . .

ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

MOREOVER AND ULTIMATELY 24



MOREOVER AND ULTIMATELY

have X1: P1 . . .

have P1 . . .

have X2: P2 . . .

moreover have P2 . . .

...

...

have Xn: Pn . . .

moreover have Pn . . .

from X1 . . .Xn show . . .

ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

MOREOVER AND ULTIMATELY 24-A



MOREOVER AND ULTIMATELY

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...

have Xn: Pn . . . moreover have Pn . . .

from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

MOREOVER AND ULTIMATELY 24-B



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-A



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-B



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-C



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-D



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-E



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-F



GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

GENERAL CASE DISTINCTIONS 25-G



MIXING PROOF STYLES

from . . .

have . . .

apply - make incoming facts assumptions

apply (. . . )
...

apply (. . . )

done

MIXING PROOF STYLES 26



DEMO

27



WE HAVE LEARNED TODAY ...

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

WE HAVE LEARNED TODAY ... 28



WE HAVE LEARNED TODAY ...

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

WE HAVE LEARNED TODAY ... 28-A



WE HAVE LEARNED TODAY ...

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

WE HAVE LEARNED TODAY ... 28-B



WE HAVE LEARNED TODAY ...

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

WE HAVE LEARNED TODAY ... 28-C



WE HAVE LEARNED TODAY ...

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

WE HAVE LEARNED TODAY ... 28-D



EXERCISES

➜ Find critical pairs for your DNF solution from last time

➜ Complete rules to a terminating, confluent system

➜ Add AC rules for ∧ and ∨

➜ Decide ((C ∨ B) ∧ A) = (¬(A ∧ B) −→ C ∧ A) with these simp-rules

➜ Give an Isar proof of the rich grandmother theorem
(automated methods allowed, but proof must be explaining)

EXERCISES 29


