LAST TIME

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- Slide 3 → Term Rewriting in Isabelle
 - → First structured proofs (Isar)

CONTENT

NATIONAL

ICT AUSTRALIA

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction

Slide 2 • Term rewriting

- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

- APPLYING A REWRITE RULE
- → l → r applicable to term t[s] if there is substitution σ such that σ l = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Slide 4

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

 $\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$

is **applicable** to term t[s] with σ if

Slide 5 $\rightarrow \sigma l = s$ and

→ $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

 $\neg A \quad \mapsto \quad A = False$ $A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$ $A \land B \quad \mapsto \quad A, B$ $\forall x. \ A \ x \quad \mapsto \quad A \ ?x$ $A \quad \mapsto \quad A = True$ Example: $(p \longrightarrow q \land \neg r) \land s$ \mapsto

 $p \Longrightarrow q = True$ r = False s = True

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

Slide 6

simp	use and simplify assumptions	
(simp (no_asm))	ignore assumptions	
(simp (no_asm_use))	simplify, but do not use assumptions	
(simp (no_asm_simp))	use, but do not simplify assumptions	

Slide 7

Dемо

CASE SPLITTING WITH SIMP

$$\begin{array}{c} P \ (\text{if} \ A \ \text{then} \ s \ \text{else} \ t) \\ = \\ (A \longrightarrow P \ s) \land (\neg A \longrightarrow P \ t) \end{array}$$

Automatic

 $P (case \ e \ of \ 0 \ \Rightarrow \ a \ | \ Suc \ n \ \Rightarrow \ b)$ = $(e = 0 \longrightarrow P \ a) \land (\forall n. \ e = Suc \ n \longrightarrow P \ b)$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CONGRUENCE RULES

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

Slide 10 For other operators expressed with conditional rewriting.

Example:
$$[P = P'; P' \Longrightarrow Q = Q'] \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify *P* to *P'*
- → then simplify Q to Q' using P' as assumption
- \Rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $[\![P = P'; P' \Longrightarrow Q = Q']\!] \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else: if_cong: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ Slide 11 (if *b* then *x* else *y*) = (if *c* then *u* else *v*)

> Prevent rewriting inside then-else (default): **if_weak_cong**: $b = c \implies$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

ORDERED REWRITING

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

Slide 12

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields

 $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

More Congruence

Slide 9

AC RULES

Example for ass	sociative-commutative rules:
Associative:	$(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Slide 13

13 Example: $(z \odot x) \odot (y \odot v)$

 $\begin{array}{ll} \text{We want:} & (z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z)) \\ \text{We get:} & (z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z)) \end{array}$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

BACK TO CONFLUENCE

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Slide 15 Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

(1)+(3)	$\{x\mapsto g\ z\}$	$a \stackrel{(1)}{\longleftarrow}$	f g t	$\xrightarrow{(3)} b$
(3)+(2)	$\{z\mapsto y\}$	$b \xleftarrow{(3)}$	f g t	$\stackrel{(2)}{\longrightarrow} b$

COMPLETION

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

Slide 16

(1)+(3)
$$\{x \mapsto g z\}$$
 $a \stackrel{(1)}{\longleftarrow} f g t \stackrel{(3)}{\longrightarrow} b$

shows that a = b (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 14

Demo

LAST TIME ON ISAR

- → basic syntax
- → proof and qed
- → assume and show
- Slide 19 → from and have
 - → the three modes of Isar

ORTHOGONAL REWRITING SYSTEMS

DEMO: WALDMEISTER

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Slide 18

Slide 17

Orthogonal rewrite systems are confluent

Application: functional programming languages

BACKWARD AND FORWARD

Backward reasoning: ... have " $A \land B$ " proof

- → proof picks an intro rule automatically
- → conclusion of rule must unify with $A \land B$

Forward reasoning:

assume AB: " $A \land B$ "

Slide 20

from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by from
- ➔ first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have R proof

- → first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- \rightarrow conclusion of rule must unify with R

FIX AND OBTAIN

fix $v_1 \dots v_n$

Introduces new arbitrary but fixed variables $(\sim \text{ parameters}, \wedge)$

Slide 21

Slide 22

obtain $v_1 \dots v_n$ where < prop > < proof >

Introduces new variables together with property

DEMO

FANCY ABBREVIATIONS

this = the previous fact proved or assumed then = from this thus = then show hence = then have with $A_1 \dots A_n$ = from $A_1 \dots A_n$ this

?thesis = the last enclosing goal statement

MOREOVER AND ULTIMATELY

	have $X_1: P_1$	have $P_1 \ldots$
	have X ₂ : P ₂	moreover have $P_2 \ldots$
	÷	:
Slide 24	have X_n : $P_n \ldots$	moreover have $P_n \dots$
	from $X_1 \dots X_n$ show	ultimately show
	wastes lots of brain power	

on names $X_1 \dots X_n$

Slide 23

```
GENERAL CASE DISTINCTIONS
```

```
show formula
```

proof -

```
have P_1 \vee P_2 \vee P_3 <proof>
moreover { assume P_1 ... have ?thesis <proof> }
moreover { assume P_2 ... have ?thesis <proof> }
moreover { assume P_3 ... have ?thesis <proof> }
ultimately show ?thesis by blast
```

qed

 $\{ \dots \}$ is a proof block similar to **proof** ... **qed**

```
{ assume P_1 \dots have P <proof> }
         stands for P_1 \Longrightarrow P
```

MIXING PROOF STYLES

```
Slide 27
```

DЕМО

WE HAVE LEARNED TODAY ...

- → Conditional term rewriting
- → Congruence and AC rules
- → More on confluence
- → Completion Slide 28
 - → Isar: fix, obtain, abbreviations, moreover, ultimately

from ...

have ...

make incoming facts assumptions apply -

apply (...)

÷

Slide 26

Slide 25

apply (...) done

```
13
```

EXERCISES

EXERCISES

- → Find critical pairs for your DNF solution from last time
- → Complete rules to a terminating, confluent system
- \twoheadrightarrow Add AC rules for \wedge and \vee

Slide 29 \rightarrow Decide $((C \lor B) \land A) = (\neg (A \land B) \longrightarrow C \land A)$ with these simp-rules

→ Give an Isar proof of the rich grandmother theorem (automated methods allowed, but proof must be explaining)