Last Time

\rightarrow Introducing new Types
\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems
Slide 3
\rightarrow First structured proofs (Isar)

Applying a Rewrite Rule

$\rightarrow l \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma l=s$
\rightarrow Result: $t[\sigma r]$
\rightarrow Equationally: $t[s]=t[\sigma r]$
Slide 4

Example:

Rule: $0+n \longrightarrow n$
Term: $a+(0+(b+c))$
Substitution: $\sigma=\{n \mapsto b+c\}$
Result: $a+(b+c)$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is applicable to term $t[s]$ with σ if
Slide $5 \rightarrow \sigma l=s$ and
$\rightarrow \sigma P_{1}, \ldots, \sigma P_{n}$ are provable by rewriting.

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

$$
\text { lemma " } f x=g x \wedge g x=f x \Longrightarrow f x=2^{-}
$$

Slide 6

simp	use and simplify assumptions
$(\operatorname{simp}($ no_asm))	ignore assumptions
(simp (no_asm_use))	simplify, but do not use assumptions
$(\operatorname{simp}($ no_asm_simp))	use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

Slide 7

$$
\begin{aligned}
\neg A & \mapsto A=\text { False } \\
A \longrightarrow B & \mapsto A \Longrightarrow B \\
A \wedge B & \mapsto A, B \\
\forall x . A x & \mapsto A ? x \\
A & \mapsto A=\text { True }
\end{aligned}
$$

Example:

$$
\begin{gathered}
(p \longrightarrow q \wedge \neg r) \wedge s \\
\mapsto \\
p \Longrightarrow q=\text { True } \quad r=\text { False } \quad s=\text { True }
\end{gathered}
$$

Slide 8

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
= \\
(A \longrightarrow P s) \wedge(\neg A \longrightarrow P t)
\end{gathered}
$$

Automatic

Slide 9

$$
\begin{gathered}
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P a) \wedge(\forall n . e=\text { Suc } n \longrightarrow P b)
\end{gathered}
$$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

Slide $10 \quad$ For other operators expressed with conditional rewriting.
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$
\rightarrow first simplify P to P^{\prime}
\rightarrow then simplify Q to Q^{\prime} using P^{\prime} as assumption
\rightarrow the result is $P^{\prime} \longrightarrow Q^{\prime}$

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$
Slide 11
(if b then x else y) $=($ if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow($ if b then x else $y)=($ if c then x else $y)$
\rightarrow declare own congruence rules with [cong] attribute
\rightarrow delete with [cong del]

Ordered rewriting

Problem: $x+y \longrightarrow y+x$ does not terminate
Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $\quad b+a \leadsto a+b$ but not $a+b \leadsto b+a$.
Slide 12
For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields

$$
(b+c)+a \leadsto \cdots \leadsto a+(b+c)
$$

AC Rules

Example for associative-commutative rules:

Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).

```
Example: }\quad(z\odotx)\odot(y\odotv
We want: }\quad(z\odotx)\odot(y\odotv)=v\odot(x\odot(y\odotz)
We get: }\quad(z\odotx)\odot(y\odotv)=v\odot(y\odot(x\odotz)
We need: AC rule }x\odot(y\odotz)=y\odot(x\odotz
```

If these 3 rules are present for an AC operator Isabelle will order terms correctly
\qquad

Slide 14

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:

Let $l_{1} \longrightarrow r_{1}$ and $l_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_{1} unifies with l_{2}.

Example:

Rules: (1) $f x \longrightarrow a \quad$ (2) $g y \longrightarrow b \quad$ (3) $f(g z) \longrightarrow b$
Critical pairs:

$$
\begin{array}{lll}
(1)+(3) & \{x \mapsto g z\} & a \stackrel{(1)}{\leftrightarrows} f g t \xrightarrow{(3)} b \\
(3)+(2) & \{z \mapsto y\} & b \stackrel{(3)}{\leftrightarrows} \text { fgt } \xrightarrow{(2)} b
\end{array}
$$

COMPLETION

$$
\begin{aligned}
\text { (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b \quad \text { (3) } f(g z) \longrightarrow b \\
& \text { is not confluent }
\end{aligned}
$$

But it can be made confluent by adding rules!
How: join all critical pairs
Slide 16

Example:

$$
\text { (1)+(3) } \quad\{x \mapsto g z\} \quad a \stackrel{(1)}{\rightleftarrows} f g t \xrightarrow{(3)} b
$$

shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Last Time on Isar

Orthogonal Rewriting Systems

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.
A system is orthogonal if it is left-linear and has no critical pairs.
Slide 18
Orthogonal rewrite systems are confluent

Application: functional programming languages
\rightarrow basic syntax
\rightarrow proof and qed
\rightarrow assume and show
\rightarrow the three modes of Isar

Backward and Forward

Backward reasoning: . . . have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB : " $A \wedge B$ "
from $A B$ have ". .." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with $A B$
General case: from $A_{1} \ldots A_{n}$ have R proof
\rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$
\rightarrow conclusion of rule must unify with R

Fix and Obtain
$\boldsymbol{f i x} v_{1} \ldots v_{n}$
Introduces new arbitrary but fixed variables
(\sim parameters, \wedge)
Slide 21
obtain $v_{1} \ldots v_{n}$ where <prop> <proof>
Introduces new variables together with property

Slide 22

Demo

Fancy Abbreviations

this	$=$ the previous fact proved or assumed
then	$=$ from this
thus	$=$ then show
hence	$=$ then have
with $A_{1} \ldots A_{n}$	$=$ from $A_{1} \ldots A_{n}$ this
?thesis	$=$ the last enclosing goal statement

Moreover and Ultimately

have $X_{1}: P_{1} \ldots$	have $P_{1} \ldots$
have $X_{2}: P_{2} \ldots$	moreover have $P_{2} \ldots$
\vdots	\vdots
have $X_{n}: P_{n} \ldots$	moreover have $P_{n} \ldots$
from $X_{1} \ldots X_{n}$ show \ldots	ultimately show \ldots
wastes lots of brain power	
on names $X_{1} \ldots X_{n}$	

General Case Distinctions

Slide 25

show formula

proof -

have $P_{1} \vee P_{2} \vee P_{3} \quad<$ proof $>$
moreover $\quad\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \}
moreover $\quad\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof $\left.>\right\}$
moreover $\quad\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \}
ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof ... qed
\{ assume $P_{1} \ldots$ have $\mathrm{P}<$ proof $>$ \}
stands for $P_{1} \Longrightarrow P$

Mixing proof styles
from ...
have...
apply - make incoming facts assumptions apply (...)

Slide 26 \vdots
apply (...)
done

Slide 27

Demo
\qquad

We have Learned today ...
\rightarrow Conditional term rewriting
\rightarrow Congruence and AC rules
\rightarrow More on confluence
Slide 28
\rightarrow Completion
\rightarrow Isar: fix, obtain, abbreviations, moreover, ultimately

Exercises

\rightarrow Find critical pairs for your DNF solution from last time
\rightarrow Complete rules to a terminating, confluent system
\rightarrow Add AC rules for \wedge and \vee
\rightarrow Decide $((C \vee B) \wedge A)=(\neg(A \wedge B) \longrightarrow C \wedge A)$ with these simp-rules
\rightarrow Give an Isar proof of the rich grandmother theorem
(automated methods allowed, but proof must be explaining)

