

NICTA Advanced Course
Theorem Proving
Principles, Techniques, Applications

$$
\}
$$

Content

\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs

Last Time

\rightarrow Conditional term rewriting

Last Time

\rightarrow Conditional term rewriting
\rightarrow Congruence and AC rules

Last Time

\rightarrow Conditional term rewriting
\rightarrow Congruence and AC rules
\rightarrow More on confluence

Last Time

\rightarrow Conditional term rewriting
\rightarrow Congruence and AC rules
\rightarrow More on confluence
\rightarrow Completion

Last Time

\rightarrow Conditional term rewriting
\rightarrow Congruence and AC rules
\rightarrow More on confluence
\rightarrow Completion
\rightarrow Isar: fix, obtain, abbreviations, moreover, ultimately

Sets in Isabelle

Type 'a set: sets over type 'a

Sets in Isabelle

Type 'a set: sets over type 'a
$\rightarrow\left\},\left\{e_{1}, \ldots, e_{n}\right\},\{x . P x\}\right.$

Sets in Isabelle

Type 'a set: sets over type 'a
$\rightarrow\left\},\left\{e_{1}, \ldots, e_{n}\right\},\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$

Sets in Isabelle

Type 'a set: sets over type 'a
$\boldsymbol{\rightarrow}\left\},\left\{e_{1}, \ldots, e_{n}\right\},\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$
$\rightarrow A \cup B, \quad A \cap B, \quad A-B, \quad-A$

Sets in Isabelle

Type 'a set: sets over type 'a
$\rightarrow\left\},\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$
$\rightarrow A \cup B, \quad A \cap B, \quad A-B, \quad-A$
$\rightarrow \bigcup x \in A . B x, \quad \cap x \in A . B x, \quad \cap A, \quad \bigcup A$

Sets in Isabelle

Type 'a set: sets over type 'a
$\rightarrow\left\},\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$
$\rightarrow A \cup B, \quad A \cap B, \quad A-B, \quad-A$
$\rightarrow \bigcup x \in A . B x, \quad \cap x \in A . B x, \quad \cap A, \quad \bigcup A$
$\rightarrow\{i . . j\}$

SETS IN ISABELLE

Type 'a set: sets over type 'a
$\rightarrow\left\},\left\{e_{1}, \ldots, e_{n}\right\},\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$
$\rightarrow A \cup B, \quad A \cap B, \quad A-B, \quad-A$
$\rightarrow \bigcup x \in A . B x, \quad \cap x \in A . B x, \quad \cap A, \quad \bigcup A$
\rightarrow \{i..j\}
\rightarrow insert $:: \alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set

SETS In ISAbELLE

Type 'a set: sets over type 'a
$\rightarrow\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$
$\rightarrow A \cup B, \quad A \cap B, \quad A-B, \quad-A$
$\rightarrow \bigcup x \in A . B x, \quad \cap x \in A . B x, \quad \cap A, \quad \bigcup A$
$\rightarrow\{i . . j\}$
\rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
$\rightarrow f^{\star} A \equiv\{y . \exists x \in A . y=f x\}$
\rightarrow...

Proofs about Sets

Natural deduction proofs:
\rightarrow equalityl: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$

Proofs about Sets

Natural deduction proofs:
\rightarrow equalityl: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$
\rightarrow subsetl: $(\bigwedge x . x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$

Proofs about Sets

Natural deduction proofs:
\rightarrow equalityl: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$
\rightarrow subsetl: $(\bigwedge x . x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
\rightarrow... (see Tutorial)

Bounded Quantifiers

$\rightarrow \forall x \in A . P x$

Bounded Quantifiers

$\rightarrow \forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$

Bounded Quantifiers

$\rightarrow \forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
$\rightarrow \exists x \in A . P x$

Bounded Quantifiers

$\rightarrow \forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
$\rightarrow \exists x \in A . P x \equiv \exists x . x \in A \wedge P x$

Bounded Quantifiers

$\rightarrow \forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
$\rightarrow \exists x \in A . P x \equiv \exists x . x \in A \wedge P x$
\rightarrow balll: $(\bigwedge x . x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A . P x$
\rightarrow bspec: $\llbracket \forall x \in A . P x ; x \in A \rrbracket \Longrightarrow P x$

Bounded Quantifiers

$\rightarrow \forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
$\rightarrow \exists x \in A . P x \equiv \exists x . x \in A \wedge P x$
\rightarrow balll: $(\bigwedge x . x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A . P x$
\rightarrow bspec: $\llbracket \forall x \in A . P x ; x \in A \rrbracket \Longrightarrow P x$
\rightarrow bexl: $\llbracket P x ; x \in A \rrbracket \Longrightarrow \exists x \in A . P x$
\rightarrow bexE: $\llbracket \exists x \in A . P x ; \bigwedge x . \llbracket x \in A ; P x \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q$

Demo: Sets

Inductive Definitions

Example

$$
\begin{gathered}
\frac{\llbracket e \rrbracket \sigma=v}{\langle\operatorname{skip}, \sigma\rangle \longrightarrow \sigma} \quad \frac{\mathrm{x},=\mathrm{e}, \sigma\rangle \longrightarrow \sigma[x \mapsto v]}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow \sigma^{\prime \prime}}
\end{gathered}
$$

$$
\llbracket b \rrbracket \sigma=\text { False }
$$

$$
\overline{\langle\text { while } b \text { do } c, \sigma\rangle \longrightarrow \sigma}
$$

$$
\frac{\llbracket b \rrbracket \sigma=\text { True } \quad\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \quad\left\langle\text { while } b \text { do } c, \sigma^{\prime}\right\rangle \longrightarrow \sigma^{\prime \prime}}{\langle\text { while } b \text { do } c, \sigma\rangle \longrightarrow \sigma^{\prime \prime}}
$$

What does this mean?

What does this mean?

$\rightarrow\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \quad$ fancy syntax for a relation $\quad\left(c, \sigma, \sigma^{\prime}\right) \in E$

What does this mean?

$\rightarrow\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \quad$ fancy syntax for a relation $\quad\left(c, \sigma, \sigma^{\prime}\right) \in E$
\rightarrow relations are sets: $E::($ com \times state \times state $)$ set

What does this mean?

$\rightarrow\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \quad$ fancy syntax for a relation $\quad\left(c, \sigma, \sigma^{\prime}\right) \in E$
\rightarrow relations are sets: $E::($ com \times state \times state $)$ set
\rightarrow the rules define a set inductively

What does this mean?

$\rightarrow\langle c, \sigma\rangle \longrightarrow \sigma^{\prime} \quad$ fancy syntax for a relation $\quad\left(c, \sigma, \sigma^{\prime}\right) \in E$
\rightarrow relations are sets: $E::($ com \times state \times state $)$ set
\rightarrow the rules define a set inductively

But which set?

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow \quad N$ is the set of natural numbers \mathbb{N}

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

\rightarrow Objective: no junk. Only what must be in X shall be in X.

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

\rightarrow Objective: no junk. Only what must be in X shall be in X.
\rightarrow Gives rise to a nice proof principle (rule induction)

Simpler Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

\rightarrow Objective: no junk. Only what must be in X shall be in X.
\rightarrow Gives rise to a nice proof principle (rule induction)
\rightarrow Alternative (greatest set) occasionally also useful: coinduction

Formally

Rules $\frac{a_{1} \in X \quad \ldots \quad a_{n} \in X}{a \in X}$ with $a_{1}, \ldots, a_{n}, a \in A$ defi ne set $X \subseteq A$

Formally:

Formally

Rules $\frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X}$ with $a_{1}, \ldots, a_{n}, a \in A$ defi ne set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A \quad(R, X$ possibly infi nite)
Applying rules R to a set B :

Formally

Rules $\frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X}$ with $a_{1}, \ldots, a_{n}, a \in A$ defi ne set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A \quad$ (R, X possibly infi nite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$

Example:

Formally

Rules $\frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X}$ with $a_{1}, \ldots, a_{n}, a \in A$ defi ne set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A \quad$ (R, X possibly infi nite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$

Example:

$$
\begin{array}{ll}
R & \equiv\{(\}, 0)\} \cup\{(\{n\}, n+1) \cdot n \in \mathbb{R}\} \\
\hat{R}\{3,6,10\} & =
\end{array}
$$

Formally

Rules $\frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X}$ with $a_{1}, \ldots, a_{n}, a \in A$ defi ne set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A \quad$ (R, X possibly infi nite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$

Example:

$$
\begin{aligned}
R & \equiv\{(\}, 0)\} \cup\{(\{n\}, n+1) \cdot n \in \mathbb{R}\} \\
\hat{R}\{3,6,10\} & =\{0,4,7,11\}
\end{aligned}
$$

The Set

Definition: $\quad B$ is R-closed iff $\hat{R} B \subseteq B$

The Set

Definition: $\quad B$ is R-closed iff $\hat{R} B \subseteq B$

Definition: $\quad X$ is the least R-closed subset of A

This does always exist:

The Set

Definition: $\quad B$ is R-closed iff $\hat{R} B \subseteq B$

Definition: $\quad X$ is the least R-closed subset of A

This does always exist:

Fact: $\quad B_{1} R$-closed $\wedge B_{2} R$-closed $\Longrightarrow B_{1} \cap B_{2} R$-closed

The Set

Definition: $\quad B$ is R-closed iff $\hat{R} B \subseteq B$

Definition: $\quad X$ is the least R-closed subset of A

This does always exist:

Fact: $\quad B_{1} R$-closed $\wedge B_{2} R$-closed $\Longrightarrow B_{1} \cap B_{2} R$-closed
Hence: $\quad X=\bigcap\{B \subseteq A . B R$-closed $\}$

Generation from Above

Rule Induction

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

induces induction principle
$\llbracket P 0 ; \wedge n . P n \Longrightarrow P(n+1) \rrbracket \Longrightarrow \forall x \in X . P x$

Rule Induction

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

induces induction principle

$$
\llbracket P 0 ; \wedge n . P n \Longrightarrow P(n+1) \rrbracket \Longrightarrow \forall x \in X . P x
$$

In general:

$$
\frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x}
$$

Why does this work?

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X . P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \text { says }
\end{aligned}
$$

Why does this work?

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X . P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but:

Why does this work?

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X \cdot P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but: $\quad X$ is the least R-closed set
hence:

Why does this work?

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X \cdot P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but:
hence: $X \subseteq\{x . P x\}$
which means:

WHY DOES THIS WORK?

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X \cdot P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but: $\quad X$ is the least R-closed set
hence: $\quad X \subseteq\{x . P x\}$
which means: $\forall x \in X . P x$

WHY DOES THIS WORK?

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X \cdot P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but: $\quad X$ is the least R-closed set
hence: $\quad X \subseteq\{x . P x\}$
which means: $\forall x \in X . P x$

qed

Rules with side conditions

$$
\frac{a_{1} \in X \quad \ldots \quad a_{n} \in X \quad C_{1} \quad \ldots}{c} C_{m}
$$

Rules with side conditions

$$
\begin{array}{ccccc}
a_{1} \in X & \ldots & a_{n} \in X & C_{1} & \ldots \\
a \in X & C_{m} \\
\hline a \in
\end{array}
$$

induction scheme:

$$
\begin{aligned}
&\left(\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R .\right. P a_{1} \wedge \ldots \wedge P a_{n} \wedge \\
& C_{1} \wedge \ldots \wedge C_{m} \wedge \\
&\left.\left\{a_{1}, \ldots, a_{n}\right\} \subseteq X \Longrightarrow P a\right) \\
& \Longrightarrow \\
& \forall x \in X . P x
\end{aligned}
$$

X as Fixpoint

How to compute X ?

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with. Instead:

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead: view X as least fi xpoint, X least set with $\hat{R} X=X$.

X as FIXPOINT

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead: view X as least fi xpoint, X least set with $\hat{R} X=X$.

Fixpoints can be approximated by iteration:

$$
X_{0}=\hat{R}^{0}\{ \}=\{ \}
$$

X as FIXPOINT

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead: view X as least fi xpoint, X least set with $\hat{R} X=X$.

Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0}\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1}\{ \}=\text { rules without hypotheses } \\
& \vdots
\end{aligned}
$$

X as FIXPOINT

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead: view X as least fi xpoint, X least set with $\hat{R} X=X$.

Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0}\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1}\{ \}=\text { rules without hypotheses } \\
& \vdots \\
& X_{n}=\hat{R}^{n}\{ \}
\end{aligned}
$$

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead: view X as least fi xpoint, X least set with $\hat{R} X=X$.

Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0}\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1}\{ \}=\text { rules without hypotheses } \\
& \vdots \\
& X_{n}=\hat{R}^{n}\{ \} \\
& X_{\omega}=\bigcup_{n \in \mathbb{N}}\left(R^{n}\{ \}\right)=X
\end{aligned}
$$

Generation from Below

Generation from Below

Generation from Below

Generation from Below

Demo: inductive definitons

ISAR

Inductive definition in Isabelle

```
inductive \(S\)
intros
rule \(_{1}: ~ " \llbracket s \in S ; A \rrbracket \Longrightarrow s^{\prime} \in S^{\prime \prime}\)
\(\vdots\)
rule \(_{n}: .\).
```


Rule induction

```
show " }x\inS\LongrightarrowPx
proof (induct rule: S.induct)
    fix }s\mathrm{ and }s\mathrm{ ' assume " }s\inS\mathrm{ " and "A" and " P s"
    show "P s'"
next
:
qed
```


Abbreviations

```
show " }x\inS\LongrightarrowPx
proof (induct rule: S.induct)
    case rule
    show ?case
next
next
    case rule}
    show ?case
qed
```


Implicit selection of induction rule

```
assume A: "x\inS"
:
show "P x"
using A proof induct
:
qed
```


Implicit selection of induction rule

```
assume A: "x\inS"
:
show "P x"
using A proof induct
\vdots
qed
lemma assumes A: " }x\inS\mathrm{ " shows " P x"
using A proof induct
\vdots
qed
```


Renaming free variables in rule

case $\left(\right.$ rule $\left._{i} x_{1} \ldots x_{k}\right)$

Renames fi rst k (alphabetically!) variables in rule to $x_{1} \ldots x_{k}$.

A remark on style

\rightarrow case (rule $i_{i} x y$)...show ?case is easy to write and maintain

A remark on style

\rightarrow case (rule ${ }_{i} x y$)...show ?case
is easy to write and maintain
\rightarrow fix $x y$ assume formula ...show formula ${ }^{\prime}$ is easier to read:

- all information is shown locally
- no contextual references (e.g. ?case)

Demo

We have seen today

\rightarrow Sets in Isabelle

We have seen today ...

\rightarrow Sets in Isabelle
\rightarrow Inductive Definitions

We have seen today ...

\rightarrow Sets in Isabelle
\rightarrow Inductive Definitions
\rightarrow Rule induction

We have seen today ...

\rightarrow Sets in Isabelle
\rightarrow Inductive Definitions
\rightarrow Rule induction
\rightarrow Fixpoints

We have seen today ...

\rightarrow Sets in Isabelle
\rightarrow Inductive Definitions
\rightarrow Rule induction
\rightarrow Fixpoints
\rightarrow Isar: induct and cases

Exercises

Formalize this lecture in Isabelle:
\rightarrow Define closed $f A::(\alpha$ set $\Rightarrow \alpha$ set $) \Rightarrow \alpha$ set \Rightarrow bool
\rightarrow Show closed $f A \wedge$ closed $f B \Longrightarrow$ closed $f(A \cap B)$ if f is monotone (mono is predefined)
\rightarrow Define Ifpt f as the intersection of all f-closed sets
\rightarrow Show that lfpt f is a fixpoint of f if f is monotone
\rightarrow Show that lfpt f is the least fixpoint of f
\rightarrow Declare a constant $R::(\alpha$ set $\times \alpha)$ set
\rightarrow Define $\hat{R}:: \alpha$ set $\Rightarrow \alpha$ set in terms of R
\rightarrow Show soundness of rule induction using R and lfpt \hat{R}

