
Overview of the Coq Proof Assistant

Nicolas Magaud

School of Computer Science and Engineering

The University of New South Wales

Guest lecture

Theorem Proving

Outline 2

• Some Theoretical Background

• Constructive Logic

• Curry-Howard Isomorphism

• The Coq Proof Assistant

• Specification Language: Inductive Definitions

• Proof Development

• Practical Use and Demos

Constructive Logic 3

• Also known as Intuitionistic Logic.

• Does not take the excluded middle rule A ∨ ¬A into account !

• Pierce law: ((P ⇒ Q) ⇒ P) ⇒ P

• A proof (of existence) of {f | P (f)} actually provides an

executable function f .

• Application: extraction of programs from proofs

∀a : nat,∀b : nat, ∃q : nat, r : nat | a = q ∗ b + r ∧ 0 ≤ r < b

From this proof, we can compute q and r from a and b.

Natural Deduction 4

• Propositional Logic (implication fragment)

Γ, A ` B

Γ ` A ⇒ B
⇒I

Γ ` A ⇒ B Γ ` A

Γ ` B
⇒E

• Rules for the other Connectives

Γ ` A Γ ` B

Γ ` A ∧B
∧I

Γ ` A ∧B

Γ ` A
∧E1

Γ ` A ∧B

Γ ` B
∧E2

Γ ` A

Γ ` A ∨B
∨I1

Γ ` B

Γ ` A ∨B
∨I2

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
∨E

Γ, A ` False

Γ ` ¬A
¬I

Γ ` A Γ ` ¬A

Γ ` False
¬E

Γ ` False

Γ ` A
FalseE

Semantics - Interpretation of a Logic (I) 5

• Tarski semantics

• Boolean interpretation of the logic

A B A ∧B A ∨B A ⇒ B ¬A ≡ A ⇒ False

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 1 0

Semantics - Interpretation of a Logic (II) 6

• Heyting-Kolmogorov semantics

• A proof of A ⇒ B is a function

which for any proof of A yields a proof of B.

• A proof of A ∧B is a pair

featuring a proof of A and a proof of B.

• A proof of A ∨B is a pair (i, p)
with (i = 0 and p a proof of A) or (i = 1 and a proof of B).

• A proof of ∀x.A is a function

which for any object t builds a proof of A[t/x].

• It looks like computing and λ-calculus, doesn’t it ?

Curry-Howard Isomorphism 7

• A formula (statement) in the logic is represented

as a type in the λ-calculus.

• A proof of a formula A is a term of type A.

logic λ-calculus

Γ, A ` B

Γ ` A ⇒ B

Γ, x : A ` t : B

Γ ` λx : A.t : A → B

Γ ` A ⇒ B Γ ` A

Γ ` B

Γ ` t : A → B Γ ` a : A

Γ ` (t a) : B

Γ ` A Γ ` B

Γ ` A ∧B

Γ ` a : A Γ ` b : B

Γ ` a, b : A×B

Γ ` A ∧B

Γ ` A

Γ ` t : A×B

Γ ` fst t : A

Curry-Howard (II) 8

• Dependent types : from A → B to ∀x : A.(B x)

• More Curry-Howard:

Γ ` A

Γ ` ∀x.A
x /∈ Γ

Γ, x : A ` M : B Γ ` (Πx : A.B) : s

Γ ` λx : A.M : Πx : A.B

Γ ` ∀x.B

Γ ` B[t/x]
Γ ` M : Πx : A.B Γ ` N : A

Γ ` (M N) : B[N/x]

• λ-cube: classification of λ-calculi

• Calculus of Constructions (CC): the most expressive calculus in

the λ-cube (polymorphism, dependent types and higher-order)

• Calculus of Inductive Constructions: CC plus Inductive Definitions

and Recursion Operators (fixpoint and pattern matching)

Outline 9

• Some Theoretical Background

• Constructive Logic

• Curry-Howard Isomorphism

• The Coq Proof Assistant

• Specification Language: Inductive Definitions

• Proof Development

• Practical Use and Demos

The Coq Proof Assistant 10

• Main Features

• Interactive Theorem Proving

• Powerful Specification Language

(includes dependent types and inductive definitions)

• Tactic Language to Build Proofs

• Type-checking Algorithm to Check Proofs

• More concrete stuff

• 3 sorts to classify types: Prop,Set,Type

• Inductive definitions are primitive

• Elimination mechanisms on such definitions

Examples of Applications of Dependent Types 11

• Lists and Vectors

append : ∀n : nat.(list n) → ∀m : nat.(list m) → (list n + m)

• Integer Square Root

∀n : int. 0 ≤ n →
∃s, r : int. 0 ≤ s ∧ 0 ≤ r ∧ n = s2 + r ∧ s2 ≤ n < (s + 1)2

• printf (single expression)

printf : ∀t : type. t → unit

An Inductive Definition 12

• Inductive nat : Set := O : nat | S : nat -> nat.

• A mean to Reason about it

∀P : nat → Prop, P 0 → (∀n : nat, P n → P (S n)) → ∀n : nat, P n

• What about Computing ?

We need something like Gödel recursion operator in System T:

Ra : a → (nat → a → a) → nat → a

equipped with the following rules:

Ra v0 vr 0 → v0

Ra v0 vr (S p) → vr p (Ra v0 vr p)

This is achieved using Pattern Matching and Structural Recursion.

Logic Connectives as Inductive Definitions (I) 13

Inductive True: Prop := I: True.

Inductive False: Prop :=.

False_ind : forall P:Prop, False -> P

Inductive and (A : Prop) (B : Prop) : Prop :=

conj : A -> B -> A /\ B

and_ind : forall A B P : Prop, (A -> B -> P) -> A /\ B -> P

Inductive or (A : Prop) (B : Prop) : Prop :=

or_introl : A -> A \/ B | or_intror : B -> A \/ B

or_ind : forall A B P : Prop, (A -> P) -> (B -> P) -> A \/ B -> P

Logic Connectives as Inductive Definitions (II) 14

• Inductive Constructors ≡ Introduction Rules

• Induction principles (ind) ≡ Elimination Rules

• Example: how to prove ∀A,B : Prop, A ∨B → B ∨A ?

coming soon. . .

Proof Development 15

• Backward Reasoning

• Tactic Based Theorem Proving

• Each tactic application refines the proof term.

• Alternatively one can give a proof term directly.

• Sometimes proofs can be performed automatically.

• Eventually a proof term is produced and type-checked.

• Demo (or commute.v)

∀A,B : Prop, A ∨B → B ∨A

Equality as an Inductive Type 16

• No equality as a primitive notion in Coq

• Propositional Equality: Leibnitz’ equality

Inductive eq (A : Type) (x : A) : A -> Prop :=

refl_equal : x = x

eq ind : ∀A : Type, x : A,P : A → Prop, P x → ∀y : A, x = y → P y

• Terms can also be definitionaly equal (βδι-convertible)

• No Extensionality Property (related to extraction matters)

∀f, g : A → B, ∀x : A, f x = g x → f = g

• Rewriting relies on the substitution principle eq ind.

Functions Definitions 17

• Defining (Structural Recursive) Functions

• Functions have to be total.

• Definition by Pattern Matching and Guarded Fixpoint

• Allows to define all primitive recursive functions

(and more . . . e.g. Ackermann)

• Example

Fixpoint plus (n m:nat) struct n : nat :=

match n with | O => m

| S p => S (plus p m)

end.

• Computational Behaviour (ι-reduction)

plus O m
ι−→ m plus (S p) m

ι−→ (S (plus p m))

Inductive definitions and Induction 18

• Inductive datatypes e.g. trees (see demo later)

• Inductive predicates

Inductive le (n : nat) : nat -> Prop :=

| le_n : n <= n

| le_S : forall m : nat, n <= m -> n <= S m

le is a parametric inductive type representing a relation.

As an inductive type, it also comes with a induction principle:

∀n : nat, P : nat → Prop,

P n → (∀m : nat, n ≤ m → P m → P (S m)) →
∀n0 : nat, n ≤ n0 → P n0

• Dependent Types

Proofs: some examples 19

• Inductive Reasoning of bacic types and on a relation (tree.v)

• Induction, Inversion Principles and Case Analysis (coins.v)

• Sometimes induction is not enough: Functional Induction

(mod2.v)

• A taste of Dependent Types (dep.v)

Related Tools and Challenges 20

• Coq has a large standard library including Integers, Reals, Sets.

• Extraction

• Fully certified programs can be extracted from proofs.

• from CCInd to Fω

• Actually from Coq to ML or Haskell

• Hoare logic and correctness proofs of imperative programs

(see http://why.lri.fr)

• Challenges:

• More Automation (try and formalize the sum example)

• Friendlier Handling of Dependent Types and

Dependently-typed Functions

Further Reading and Exercices 21

• Interactive Theorem Proving and Program Development:

Coq’Art: The Calculus of Inductive Constructions

by Yves Bertot and Pierre Castran

• http://pauillac.inria.fr/coq (Coq Manual, Standard Library)

• Exercices

• http://www.labri.fr/Perso/˜ casteran/CoqArt/

• ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/CoqExamples/

