
Iterative Tree Search in General Game Playing with
Incomplete Information

Armin Chitizadeh and Michael Thielscher

UNSW Sydney, NSW 2052 Australia
{a.chitizadeh, mit}@unsw.edu.au

Abstract. General Game Playing (GGP) is concerned with the development of
programs capable of effectively playing a game by just receiving its rules and
without human intervention. The standard game representation language GDL
has recently been extended so as to include games with incomplete information.
The so-called Lifted HyperPlay technique, which is based on model sampling,
provides a state-of-the-art solution to general game playing with incomplete in-
formation. However, this method is known not to model opponents properly, with
the effect that it generates only pure strategies and is short-sighted when valu-
ing information. In this paper, we overcome these limitations by adapting the
classic idea of fictitious play to introduce an Iterative Tree Search algorithm for
incomplete-information GGP. We demonstrate both theoretically and experimen-
tally that our algorithm provides an improvement over existing solutions on sev-
eral classes of games that have been discussed in the literature.

Keywords: General Game Playing with Incomplete Information · Learning ·
Valuing information · Fictitious play

1 Introduction

Designing a player for games with incomplete information1 has been studied in dif-
ferent areas. Vector minimax is a well-known and relatively general technique, which
has been shown to solve the so-called strategy-fusion problem [6]. A limitation of the
vector minimax technique is to rely on a specific game structure: It is limited to games
in which all the moves can be seen except the first ones by the random player, e.g.
where cards are being shuffled [4]. Another relatively general technique for playing
incomplete-information games is Information Set Monte Carlo Tree Search (ISMCTS)
[2]. This technique generalizes the well-known Monte Carlo tree search to incomplete-
information games. Thanks to the use of Monte Carlo simulations, this technique per-
forms well for large games. One of its limitation is given by the assumption that all
states in an information set are equally likely. Due to this limitation, ISMCTS fails to
properly model opponents or to play games with non-uniform probability distributions

1 In game theory the term imperfect information is used to refer to the class of games in which
players lack full information about the state of the game. On the other hand, in AI it is more
common to use the expression incomplete information for problems in which agents lack full
information. It has become customary in GGP to follow the standard AI terminology.
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over possible states such as the famous Monty Hall problem [9]. Counterfactual Regret
Minimization (CFR) [23] was introduced to solve the imperfect-information game of
poker. This technique performs well thanks to poker specific optimisations [12]. How-
ever, its general implementation failed to perform equally well in other games with
incomplete information. One of the reasons is the high computational complexity of
O(I2N), where I is the number of information sets and N the total number of states
in the game [13]. All of the previously mentioned techniques perform well in some
games, but it is believed that their success relies heavily on game-specific expertise of
their developers and tailored algorithms.

More recently, AlphaZero [20] was able to learn the game of chess from scratch and
through self-play to a point where it was able to beat Stockfish [16], the hitherto best
chess engine. AlphaZero uses a relatively general approach compared to its predecessor
AlphaGo [20]. However, AlphaZero is only applicable to complete-information two-
player board games [20].

General Game Playing is concerned with the development of an AI capable of play-
ing any arbitrary finite game effectively by just receiving the rules of the game without
any human intervention. GGP programs receive the game rules in the form of the gen-
eral Game Description Language (GDL), which has a Prolog-like syntax [14]. The first
version of GDL was designed to only model deterministic games with full observabil-
ity. Later, the extension GDL-II was developed for general game playing with incom-
plete information [21]. This extended general specification language allows to describe
any finite game with incomplete information and randomness, for example, Poker or
Backgammon, to a general game-playing system; however, designing such a system
has remained a challenge.

The first successful players for GGP-II approached the problem by grounding all
unknown variables and generating a set of sampled complete-information game states.
They then searched each state sample and averaged the reward for moves over each of
them in order to find the optimal move [17, 3]. However, searching on a set of sampled
complete-information states for a game with incomplete information has its limitations,
as pointed out in a recent paper on a technique called lifted HyperPlay [18]. Specifically,
when searching separate complete-information samples, no extra value be put on moves
that provide additional information about the current game state. This was a limitation
of all previous approaches that combined search with complete-information sampling
and was the main motivation for the development of the two state-of-the-art techniques
in general game playing with incomplete information: HyperPlayer with Incomplete
Information (HP-II) [18] and the so-called Norns algorithm [8].

HP-II uses nested players to simulate games. Through this technique, it can value
knowledge-gathering moves, and it can also value moves that prevent the opponents
from gaining helpful knowledge. However, this comes at the price of two main limi-
tations of HP-II itself: high resource consumption [19] and, more importantly, short-
sightedness when it comes to valuing information, as we will demonstrate in this paper.
The aforementioned Norns algorithm, which uses Action-Observation Trees (AOT) to
simulate a game and to determine the value of information, also suffers from high re-
source consumption and, more importantly, is restricted to single-player games [8].
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In this paper, we introduce Iterative Tree Search (ITS) to overcome the limitations
of HP-II and Norns. Our main motivation was to find a technique that, in principle, can
correctly solve GDL-II games in general provided their search space is suitably small,
rather than finding a technique that is applicable to large games. Our ITS combines
the classic idea of fictitious play [1] with incomplete information tree search. Fictitious
play learns the behavior of a rational opponent by self-playing a game several times.
Incomplete information tree search is able to model an information set at every step of
the game.

The main contributions of our paper are as follows: We formally introduce Iterative
Tree Search as a new approach to general game playing with incomplete information.
We theoretically analyse both the ITS and the HP-II algorithm and show the limita-
tions of HP-II compared with ITS on different classes of games. We also report on
experimental results with an implementation of the ITS algorithm to demonstrate its
advantages over the existing techniques.

2 Background

In this section, we will briefly describe General Game Playing with Incomplete Infor-
mation (GGP-II) and Fictitious Play (FP). For further details we refer the reader to [18]
and [1].

2.1 General Game Playing with Incomplete Information

Players in General Game Playing (GGP) are given the rules of a game in the declarative
Game Description Language (GDL) [14]. States in GDL are defined as sets of true facts.
The initial state and terminal states are distinguished, and rewards are given to players
at terminal states. In GDL-II, Nature is modeled as a special-purpose “random” player.
This player chooses its moves at random with uniform probability, and it has the same
reward values at all terminal states. Logical rules are used to describe the legal actions
and their effects on a game state. In GDL-II, players’ moves are hidden from each other,
but players may receive “observation tokens” after each joint move [21]. The only way
of learning something about the moves by other players is through these perceptions.
Rules of the game explicitly describe under which conditions a player makes an obser-
vation. When the game ends, players will be notified and are given a reward value. In
GGP, by convention the minimum reward value is 0 and the maximum reward value is
100. The goal of players is to achieve the maximal reward.

Formalisation In this paper, we will not be concerned with a set of GDL rules them-
selves but rather consider the induced game tree, including players’ perceptions [21].
GDL and GDL-II allow us to describe games with simultaneous moves. For simplicity
of explanation, we will use the standard transformation by which joint-move incomplete-
information games in GGP-II can be converted into sequential incomplete-information
games.

Definition 1. Let G = 〈S,R,M,Σ, s0, Z, u, do〉 be a game with incomplete informa-
tion, where:
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– S is a set of states;
– R is a set of players, and R(s) is a function which given state s provides the player

whose turn it is;
– M is a set of moves, and M(s) is the list of legal moves at state s by the player2;
– Σ is a set of perceptions, and Σ(s) is the list of perceptions for R(s) from initial

state to s;
– s0 ∈ S is the initial state of the game;
– Z ⊂ S is the set of terminal states, for which we have M(z) = ∅ for any z ∈ Z;
– u : Z → <|R| is the terminal utility function;
– do : S ×M → S is the successor function.

To illustrate this, we look at an extended cutting wire game (ECW), adapted from a
cooperative game presented in [18] and which we use later in section 4.1. Figure 1
shows the left part of the game tree. The roles are R = {random, cutter, teller}. At
first, the random player arms a bomb, and only the teller sees which of two wires is used
for this purpose. For the next two moves, then, the teller can either decide to tell which
wire was used, or wait. Telling first costs 20 points and telling later costs 10 points for
both players. Through telling, the cutter is informed about which wire he should cut to
disarm the bomb. At the end, the cutter has to decide which wire to cut. Cutting the
correct one gives both players 100 points (minus the aforementioned costs). Otherwise,
they get 0. We use the sequence of moves as subscript to denote a state in the game
tree, for example srtwr. Examples for the set of legal moves and list of percepts for a
state are: M(srw) = {wait2, tell2} and Σ(srtt) = [(), red, red] respectively. As the
cutter reaches its decision state srtt, he has received three perceptions along the path.
The first perception is empty because the first action by random does not result in any
perception for the cutter. The second and third both are “red” because, in this particular
state, the teller has chosen tell1 and tell2. The final utility in this case u(srttr) = 70.
The do(S,M) function returns the next state, e.g. d(sr, wait) = srw.

70

red

0

blue

tell2

80

red

0

blue

wait2

tell1

90

red

0

blue

tell2

100

red

0

blue

wait2

wait1

arm red

· · ·

arm blue

Fig. 1: Part of the game tree for the extended “cutting wire” game, with the red wire being armed.
The green circle means the node is in an information set together with one other node in the other
half of the game tree (because the cutter has not received any observation token).

2 Each move is unique. Having similar names for moves at different states does not mean the
moves are the same.
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2.2 Fictitious Play

In game theory, fictitious play has been suggested as a learning technique [1]. It was
originally designed for one step joint-move games, that is, normal form games. It is
known to find a Nash equilibrium (NE) in the time-average sense for two-player zero-
sum games, for games solvable with iterated strict dominance, and for so-called identi-
cal interest games as well as potential games [15]. Recently, the technique has been ex-
tended to some sequential-form games, for example, full-width extensive-from fictitious
play (XFP) [10] and neural fictitious self-play (NFSP) [11]. The XFP technique learns
a strategy which is realization-equivalent to the normal form fictitious play, meaning it
considers a strategy as a whole. For this reason, this technique suffers from the curse of
dimensionality. The NFSP technique uses sampling and neural networks to learn an NE
strategy for the game. It was able to play limited Texas Hold’em successfully, but this
game has no information-gathering moves.

The standard fictitious play updates a mixed policy after each iteration by averag-
ing the previously played moves [1]. The updating algorithm can be mathematically
described as follow:

πt+1
r =

πtr
t

+
π(b(πt−r))

t+ 1
(1)

Here, r is the player and t is the iteration index. πtr is the mixed policy for player r at
iteration t and π−r is the mixed policy for all players except r. Mixed policy πr defines
the probabilities for player r to choose a move at each state where it is this player’s turn.

Given the mixed policy π−r of other players, player r finds the best response as
follows:

b(π−r)
t = argmax

m∈M
util(m,πt−r) (2)

Here, b(π−r) is the best-response function which returns the best move mr for player r
given the mixed policy for the other players; and util(mr, π−r) is the reward function
for player r if he plays move m given the strategy π−r for the opponents. In this paper,
we refer to π as a function which takes a move and returns a policy with the probability
of the given move being 1 and all others being 0.

3 Iterative Tree Search

In this section, we will introduce a novel algorithm called the Iterative Tree Search
(ITS) for GGP-II. ITS is an offline search, meaning it finds the best move before the
game begins, and then during the game, it plays based on the pre-calculated mixed
move policy. We first need to generate the incomplete-information tree and initialize
its probabilities and utilities of the states; then we need to update the states’ values
and move probabilities iteratively, all within the given time limit before the start of the
game.
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3.1 Initialising the Tree

The first step in initialising the incomplete-information game tree is to represent in-
distinguishability of states. We use information sets for this purpose, which can be
determined from the observation tokens a player has received [21].

Definition 2. Let G be a GDL-II game as in Def. 1, then:

– I(s) : S → S∗ is the information set function which takes a state s and returns a set
of states. The given state and all the states in the returned set are indistinguishable
by the player for whom s is a decision node.

Since we are converting games into sequential form, the player for which states are
indistinguishable is always the player whose turn it is. The following equation describes
formally how an information set is generated:

I(s) = {x ∈ S : Σ(s) = Σ(x) ∧ ξr(s) = ξr(x) ∧ r = R(s)} (3)

Here, ξr : S → M∗ is the history function which provides the sequence of moves of
player r from the start to the provided state. In our ECW example, the only non-singular
information set is I(srww) = {srww, sbww}. We refer to this information set as Iww.

Our ITS technique assigns probabilities to moves and states in each information set.
The probability of a state can be recursively calculated from the probabilities of the
moves. Through iteratively updating both probabilities, we can obtain a mixed strategy
for every information set in a game tree that can be used to play optimally during the
game.

When initializing the tree, we provide uniform probability to the moves in a state.
A mixed policy is beneficial in a sense that it can prevent the opponent from predicting
our moves. In the ECW example, the first iteration will be the initial move probability
of µ(tell1) = 1

2 .

3.2 Iterative Probability Update

After populating the probabilities of the moves, we calculate the probability of every
state in an information set to be the true state of the game.

Definition 3. Let G be a GDL-II game as above, then:

– µ : M → [0, 1] is the probability function which, given a move, returns the proba-
bility of the move to be chosen by the player.

The initial value of µ0 is uniform over all the moves in a state, that is, µ0(m) = 1
|M(s)|

for all m ∈ M(s). Based on Definition 3 we can define for player r the mixed policy
πr with move probability µ as follow:

πr = {µ(m)|r = R(s) ∧m ∈M(s)} (4)

Definition 4. Let G be a GDL-II game as defined, then:



Iterative Tree Search in General Game Playing with Incomplete Information 7

– ρ : S → [0, 1] is the probability function which for a state returns the probability
of the state to be the true state in its information set.

ρ can be calculated with the help of the probability factor.

– ρFactor(s′) = ρFactor(s) ∗ µ(m)
where s′ = do(s,m) and ρFactor(s0) = 1.

With this definition we can calculate the ρ of states in an information set as follows:

ρ(s) =
ρFactor(s)∑

sn∈I(s) ρFactor(sn)
(5)

We then need to calculate and assign utility values to all states in the game. we
extend the terminal utility function defined in a game to a function that assigns a utility
to all states. The utility of each state can be calculated based on the utilities of the
successor states and the probabilities of moves. The recursion will be as follow:

u(s) =
∑

m∈M(s)

[u(do(s,m)) ∗ µ(m)] (6)

The base cases are the utilities of terminals which are given as part of the game descrip-
tion.

In our ECW example, at the first iteration all ρFactor() are equal at each level.
This game has a branching factor of two at all nonterminal nodes, hence µ0(m) = 1

2
for all moves m in all states of the game. We can then calculate ρFactor(srwt) =
µ0(r) ∗ µ0(w) ∗ µ0(t) ∗ ρFactor(s0) which is 1

23 . As a result, the values ρ(srww)
and ρ(sbww) are 1

2 while all the others are 1 because they all form their own singleton
information set.

At the next stage, we need to calculate the value of each move in its information set
and then set the move with the highest utility as the chosen one. To calculate the reward
of a move we will consider all the states in the information set.

Definition 5. Let G be a GDL-II game as defined, then:

– chosenMove : I → M is the move selection function which chooses the move
with the highest reward for the player in an information set as:

chosenMove(i) = argmaxm

[∑
s∈i

ρ(s) ∗ ur(s′)
]

(7)

Here, for each s we have s′ = do(s,m) and r = R(s). Similar legal moves in an
information set have the same utility. As a result, the chosen move will be the similar
move for all the states in the same information set.

In the ECW example, for the cutter the chosenMove in singleton information sets
will be the move that leads to the highest possible utility at termination. However, for
cut red the average utility at Iww is ρ(srww) ∗u(srwwr)+ρ(sbww) ∗u(sbwwr). This is
similar to the cut blue action at Iww and equals 50. In the long run, as the game is sym-
metric, ρ(srww) and ρ(sbww) will stay the same. So chosenMove switches randomly
between the two moves in Iww.
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For the last stage, we need to update the move probability function µ as follows:
Let m be chosenMove and m′ all other moves.

µt+1(m) =
(µt(m) ∗ t) + 1

t+ 1
(8)

µt+1(m′) =
µt(m′) ∗ t
t+ 1

(9)

We will now reset all utilities for non-terminal states and ρFactor values. The it-
eration can be continued until the end of the pre-game calculation. In this way, we can
come up with an approximation of optimal moves within a given time limit.

Coming back to the ECW example, in the long run, for the cutter’s states the proba-
bility of cutting the correct wire approaches 1 except for the states in Iww in which the
probabilities of cut blue and cut red stay the same. As can be seen, the computational
complexity of the algorithm is linear in the number of game states.

The Iterative Tree Search is summarized as Algorithm 1 below.

Algorithm 1 Iterative Tree Search
1: Generate allInfomationSets . using (3)
2: t← 0
3: for all m ∈M do
4: Initialise µ(m)

5: while time allowed do
6: for all s ∈ S do
7: u(s)← 0; ρFactor(s)← 0; ρ(s)← 0; t← t+ 1

8: ρFactor(s0)← 1 . s0 is the initial state
9: for all s ∈ S & m ∈M(s) do

10: s′ ← do(s,m)
11: ρFactor(s′)← ρFactor(s) ∗ µ(m)

12: for all s ∈ S do
13: ρ(s)← ρFactor(s)∑

sn∈I(s) ρFactor(sn)

14: for all s ∈ S & m ∈M do . For terminals, it is already set
15: u(s)← u(s) + (u(do(s,m)) ∗ µ(m))

16: for all i ∈allInfomationSets do
17: chosenMove(i)
18: ← argmax

m∈M(i)

[
∑
s∈i ρ(s) ∗ uR(s)(do(s,m))]]

19: for all I ∈ allInfomationSets do
20: µ(chosenMove(I)) = (µ(chosenMove(I))×t)+1

t+1

21: for all m ∈M(I) & m 6= chosenMove(i) do
22: µ(m) = µ(m)×t

t+1
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4 Analysis

In the following, we characterize the classes of GDL-II games that our ITS can solve.
We will resort to the theory of fictitious play to this end. We also demonstrate how
HP-II fails in these games and show experimental results to confirm our observations.
All mentioned games have either been previously introduced in the literature or are
extensions of games from the literature.

4.1 Games with Dominant Pure Strategy and Single Player Games

ITS can correctly solve games in which there exists a dominant pure strategy. Having a
dominant strategy means playing one specific move at each information set guarantees
the player the highest reward. Also, it means that the actions of the opponents will not
affect the decision of the player. If a single-player game with incomplete information
has an optimal strategy, then this will be a pure dominant strategy, as the random player
has no intention of changing its strategy.

The ITS algorithm at the first iteration assigns equal probabilities to all moves from
the same information set. This means that no µ(m) will ever have zero probability. As
the calculation progresses, the player with a dominant strategy tends to play more of
it because states on the path of a dominant strategy have the highest rewards and the
probability of the parent state never changes. As a result, the probability of playing a
dominant strategy increases with each iteration. So ρ(s) ∗ ur(s′) always increases and
will always be the chosen move. We can use the ECW game to illustrate how ITS can
correctly play this type of games and also why HP-II fails.

Example: Extended Cutting Wire The game was inspired by the “cutting wire” game
originally published to motivate the HP-II technique [18]. In the original version, the
teller can tell or wait only once. HP uses complete-information sampling and there-
fore fails to solve this problem (since information gains can have no value), but HP-II
successfully solves the original version of the game. We have extended the cutting wire
in order to show that ITS can correctly value information in deeper parts of the game
tree while HP-II is “short-sighted” in this regard. ITS correctly chooses to tell at the
second level, where it is less costly, while the HP-II player chooses to tell at the first
level because of its short-sightedness when valuing information.

HP-II uses nested players to overcome the limitations of model sampling as used
in HP. However, at each step it sees information-gathering moves only one level ahead.
This causes the algorithm to choose tell1 and wait2 rather than wait1 and tell2. More
precisely, the move selection policy of HP-II πhpii can be described as:

argmaxm∈M(s)

 ∑
s′∈I(s)

eval(replay(s0, Ir∈R(do(s
′,m)),πhp),πhp, n)

 (10)
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We have modified the algorithm to suit sequential games.3 At state sr, πhpii chooses
the move based on which of πhp(srw) or πhp(srt) gives the higher expected reward.
The HP-II policy, πhp, uses a Monte-Carlo search, so the move wait1 returns 50+90

2
and move tell1 returns 70+80

2 . As a result, HP-II considers tell1 a better move than
wait1. We refer to this problem as short-sighted information valuation.

Our new ITS algorithm can correctly value the information anywhere in the game
tree. To illustrate this, recall the explanation for HP-II. As previously described, for the
arm red part of the game tree, the cutter’s utilities in the long run will be: u(srtt) = 70,
u(srtw) = 80, u(srwt) = 90 and u(srww) = 50. Then using equations (7) and (6) we
obtain u(srw) = 90 and u(srt) = 80. As a result, the chosenMove(I(sr)) will be
wait1. Analogously, we can show that chosenMove(I(sb)) is wait1 too.

To validate our claims we have run ITS with the extended cutting wire game. The
graph in Figure 2 shows the probability of the tell move at the two different stages of
the game during the first 1,000 iterations. If the probability of the telling action is high
in any state, then the probability of waiting is low and vice versa. As can be seen from
the graph, the probability of choosing the telling action twice quickly converges to zero
at early iterations. The probability of the first, more costly telling move also drops to
almost zero in less than 1,000 iterations. In fact, after less than 200 iterations ITS will
very likely choose to wait first and then to tell.

Fig. 2: Probability of tell at different states during the first 1,000 iterations in the extended cutting
wire game.

3 The replay function replays from the initial state to the given state. In the sequential ECW
game, where the only information set belongs to the secondP layer, the replay function will
be reduced to a simple information set function.
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4.2 Non-Locality Problem

Frank and Basin [5] have formalized and analyzed the problem of non-locality. Non-
locality happens when an algorithm only considers children of a state to find the best
move for that state. Our ITS algorithm models the opponent, which can be shown to
lessen the impact of this problem.4

Example: The game in Fig. 5 [6] To show the ability of ITS algorithm to solve games
that exhibit the non-locality problem, we consider the motivating example from [5]. In
this game, the first move by random is only visible to the secondP layer while players’
moves are visible to each other. The random choice places the game in a particular
world, and the utilities for the players depend on their moves and the world they are
in.5 Figure 3 depicts the game tree for this game and shows firstP layer’s optimal
strategy. This strategy guarantees that the first player always receives 1 in w1. ITS is
able to always play correctly at states a and e from the first iteration on because these
are the dominant moves. Figure 4 shows the mixed strategy of the player at state d after
100 iterations. After less than 100 iterations, our implemented ITS was also able to play
left at d with a probability of 99%.

a
b

d

1
0
0

left

0
1
1

right

e

0
0
0

left

1
0
0

right

c

f

0
0
0

w1:
w2:
w3:

Fig. 3: Game with non-locality problem represented in world model.

4.3 One-Step Joint-Move Two-Player Zero-Sum Games

We show that ITS reduces to fictitious play for this category of games, and since ficti-
tious play is known to solve these games, ITS can solve them too. For ITS we convert
this category of games into a two-step sequential game with incomplete information.
All moves of the firstP layer lead to states that are all in the same information set. To
show that the ITS algorithm works similar to fictitious play for this class of games, we
will show that the updating policy and the move selection of fictitious play is similar to
ITS. We refer to the player who moves first as the firstP layer and call the opponent

4 Frank and Basin[7] have introduced the “Vector MiniMax” technique, which also just lessens,
rather than completely avoids, the impact of non-locality.

5 This game can, of course, be straightforwardly axiomatized in GDL-II as a GGP-II game [22].
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Fig. 4: Mixed strategy at state d in the non-locality game during the first 100 iterations.

the secondP layer. For both players, updating the mixed policy π via equation (1) is
identical to updating µ of moves in ITS, that is, equations (8) and (9).

For the move selection policy of ITS we need to consider each player separately.
With regard to choosing the best move for the firstP layer in ITS, if we combine
equations (7) and (6), then for chosenMove() we will get:

argmaxm1

[∑
s∈i

ρ(s) ∗
∑

m2∈M(s′)

[u(do(s′,m2) ∗ µ(m2))]
]

(11)

Here, s is the initial state s0 and is in a singleton information set; s′ is the state after
the initial state, referred to as sm1 in what follows. ρ(s0) is always equal to 1. We also
substitute do(s′,m2) with sm1m2, which is a terminal state with a fixed reward. Also,
to simplify notation, we replace M(s′) with M2. For chosenMove() we then obtain
the following:

argmaxm1

[ ∑
m2∈M2

[u(sm1m2 ∗ µ(m2))]
]

(12)

Considering the relation of mixed move policy and mixed policy described in equa-
tion (4), this equation is indeed equal to the best respond equation (2) for fictitious play.

With regard to choosing the best move for the secondP layer in ITS, the action of
the firstP layer changes the probability of state ρ(s). Since the secondP layer’s deci-
sion states are all in the same information set and are all generated from the initial state,
ρFactor(sm1) = µ(m1). So ρ(sm1) =

µ(m1)∑
m∈M2

µ(m) . By definition the denominator is

equal to 1. By substituting these in equation (7), for chosenMove() we obtain:

argmaxm2∈M2

[ ∑
m1∈M1

µ(m1) ∗ u(sm1m2)
]

(13)
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which is identical to equation (12) with m1 being replaced by m2. This completes the
proof that ITS reduces to basic fictitious play for this category of the games and that,
therefore, ITS is able to correctly play any one-step, joint-move zero-sum game with
two players. As an example, we look at Biased Penalty Kick, which is a common game
in game theory to show the ability of an algorithm to find a Nash equilibrium (NE).

Example: Biased Penalty Kick This is a well-known game to illustrate opponent
modeling and the value of playing a mixed strategy: If the kicker shoots right and the
keeper catches, the keeper gets 60; otherwise, the kicker gets 60. If the kicker shoots left
the rewards will instead be 40. There is no pure NE, and the optimal mixed strategy in
a NE for the kicker is to shoot 40% right and 60% left. For the goalkeeper, it is jumping
40% to the left and 60% to the right.

While both HP and HP-II only deliver pure strategies, ITS can solve this problem
after just a few iterations as this game is a one-step joint-move game. To verify this
claim we have run our implemented ITS algorithm on this problem. Figure 5 shows the
mixed strategy of the goalkeeper for the first 10, 000 iterations. ITS quickly finds the
correct probabilities for both players.

Fig. 5: Mixed strategy of the goal keeper for the biased penalty kick game for the first 10,000
iterations.

4.4 Move Separable Games

In this category of games, each player is only responsible for moves in one stage of
the game. This means that when the secondP layer begins to move after a series of
moves by the firstP layer, then after the secondP layer has made their moves the
game ends, and also the firstP layer cannot interrupt the secondP layer’s course of
actions. If the random player exists in the game, its actions are visible to the player of
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the corresponding stage of the game. In this class of games, the secondP layer may or
may not be able to see some or all of the actions performed by the firstP layer. We
will show that these games will be reduced to a game where the firstP layer chooses
a joint-move game for both players to play. HP-II fails to solve games in this class as it
can only find a pure strategy, whereas again the ITS algorithm can solve this category
of games.

First, consider the simpler case of games where the secondP layer cannot see the
firstP layer’s moves. The probability of a state to be the true state in the information
set of the secondP layer depends on the sequence of the firstP layer’s moves. This
sequence can be considered as one single, combined move, whose probability is the
same as the frequency with which the corresponding sequence is chosen. The game can
therefore obviously be reduced to a one-step, joint-move game that is solvable by the
ITS algorithm.

Now consider the case when the secondP layer can see some of the actions of
the firstP layer. The firstP layer can lead the secondP layer into one of possible
information sets. The ρ(s) of the states in each information set can be changed by the
unobserved moves of the firstP layer. Thus a game of this type can be reduced to
a game where the firstP layer chooses a subgame of a one-step, joint-move game
with the highest NE payout for himself among all subgames and then play the subgame
corresponding to the NE strategy. As described in the previous section, ITS can solve
this subgame and determine the payout for each NE. Choosing the subgame with the
highest NE payout then just requires a simple search. In this way ITS can solve Move
Separable Games. We end our analysis with an example of a game from the literature
that falls into this category.

Example: Banker and Thief This game was used in the HP-II paper [18] to show the
ability of HP-II to value the withholding of information. There are two banks in this
game, one of which has a faulty alarm system. The owner of the bank that is faulty has
to decide to distribute $100 between the two banks in $10 notes. The thief can see the
distribution of the money between the banks but not which of the two is faulty. If the
thief decides to rob the faulty bank then he succeeds in getting the money, otherwise
the banker receives all the money left in his bank at the end of the game.

Using HP-II, the banker places $40 in the faulty bank and $60 in the other, implicitly
making the assumption that the thief is greedy and will choose to rob the bank with $60,
which means the banker wins. This strategy was considered as the winning strategy in
HP-II paper [18]. We claim that this is, in fact, a sub-optimal strategy as the banker
wrongly assumes the thief to be greedy. Indeed, the thief might well assume the banker
to assume that he is greedy, and hence he will decide to go after the $40. The best
strategy for this game must, therefore, be a mixed strategy so that the thief becomes
indifferent to choosing a bank. Only then is the (mixed) strategy a Nash equilibrium.
Different distributions lead to different NE with different expected payout. The highest
expected payout for the banker is a $50-$50 distribution with an expected payout of
$25, while the expected payout for the $40-$60 distribution is just $24. Since this is a
Move Separable Game, ITS can solve it in contrast to HP-II.
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To prove our claim, we have run our ITS algorithm with this game, but to make it
more challenging we added two extra safe banks. The banker can then choose a distri-
bution of his money in $10-chunks among four banks. There is a total of 287 ways to do
so. Table 1 shows the probabilities for some mixed strategies for the banker in the case
when the first bank has been selected as faulty by the random player. The theoretical
analysis for this variant of the game shows that the optimal strategy is to put $50 in a
faulty and $50 in any of the safe banks. As can be seen from the table, this is what the
ITS algorithm will do in 94% of the times after one million iterations. Figure 6 shows
how the probabilities for some of the 287 strategies evolve.

Money distribution 50 50 0 0 50 0 50 0 50 0 0 50 0 50 50 0 all others

Probability of choosing 35.67% 27.5% 30.88% 0% 5.95%

Table 1: Probability of choosing a money distribution by ITS in the banker and thief game.

Fig. 6: The probability change toward equilibrium for four strategies in the banker and thief game
when the faulty bank is the first one.

5 Conclusion

We have introduced the Iterative Tree Search (ITS) algorithm as a significant improve-
ment over state-of-the-art algorithms, in particular HP-II, for general game playing with
incomplete information. While HP-II is short-sighted on valuing information, our ITS
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algorithm has been shown to correctly value information in a game by gathering in-
formation at the lowest possible cost that promises the highest benefit. An ITS-based
general game player is also able to withhold information from opponents and to play
a NE on a number of classes of games. Moreover, HP-II is not able to compute mixed
strategies, so it fails to find the best strategy in games that require opponent modeling.
With ITS we can overcome these limitations by iteratively self-playing the game us-
ing an incomplete-information tree and thus learn the expected behavior of a rational
opponent.

ITS has shown strong performance in playing small games. However, it failed to
perform well in larger games such as poker. A related direction for future work is the
addition of sampling techniques to ITS in order to break the curse of dimensionality.
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