Questions:

1. Write a program in your favourite procedural language that does linear search in an array

2. The logical formula \(p \rightarrow \neg q \) is equivalent to which of the following:

 - [A] \(\neg p \rightarrow q \)
 - [B] \(\neg (p \rightarrow q) \)
 - [C] \(q \rightarrow \neg p \)
 - [D] \(\neg q \lor \neg p \)

3. Prove by induction that \(n! \geq 2^{n-1} \) for \(n \geq 1 \)

Answers:

1. Below is a linear search for a key in an array, written in the C language.

```c
/*
   Does array 'a' of length 'len' contain the key 'val'? If true, return the index of the key. If false, return -1
*/
int LinearSearch(int a[], int len, int val)
{
    int found = -1; // assume not found
    for (int i=0; i<len && found==-1; i++)
    {
        if (a[i] == val) found = i; // found the key
    }
    return found;
}
```

2. The logical formula \(p \rightarrow \neg q \) is equivalent to [C] \(q \rightarrow \neg p \), and to [D] \(\neg q \lor \neg p \)

3. Proof by induction that \(n! \geq 2^{n-1} \) for \(n \geq 1 \).

 Base case: \(n = 1 : 1! \geq 2^0 \) is true

 Inductive hypothesis: assume true for \(n = k : k! \geq 2^{k-1} \)

 Inductive step: prove true for \(n = k + 1 \), that is, prove \((k+1)! \geq 2^k \)

 \[
 (k+1)! = (k+1) \times k! \geq (k+1) \times 2^{k-1} \geq 2 \times 2^{k-1} = 2^k \quad \text{property of factorials}
 \]

 substitute IH into previous line

 \[
 k + 1 \geq 2 \text{ for } k \geq 1, \text{ property of exponents}
 \]

 QED