
Computer Hardware: 2500 BC - wood

Abacus invented Sumeria c. 2500 BC,

Computer Hardware: 100 BC - brass

Antikythera mechanism
Analog computer used to predict astronomical positions and
eclipses

Computer Hardware: 1835 - brass & steam

Analytical Engine designed by Charles Babbage 1835 - never built.
General purpose programmable computer using punch cards and
steam power

The first Coder: 1835

Ada Lovelace - mathematician who wrote the first programs.

Computer Hardware: 1890 - electromechanical

Hollerith tabulating machine used for calculations in the US
census, company eventually becomes IBM

Computer Hardware: 1944 - vacuum tubes

Colossus: arguably first first programmable, electronic, digital
computer.
Designed by Tommy Flowers for WWII codebreaking.

Computer Hardware: 1959 - transistors

PDP-1 first computer in Digital Equipment Corporation’s
successful line.
Successors were first machines C and Unix used on.

Computer Hardware: 1975 - Integrated Circuits

PDP-11 computer using large-scale integrated circuits containing
thousands of transistors.

Computer Hardware: 1972 - Integrated Circuits

Intel 4004 4-bit microprocessor - computer on single chip - 2300
transistors.

Computer Hardware: 1993 - Integrated Circuits

Intel ”Pentium” 32-bit microprocessor - computer on single chip -
1000000+ transistors.

The Modern Computer

What makes up a working computer?

• hardware (motherboard, CPU, RAM, HDD, etc.)

• bootstrapping code (BIOS)

• device drivers

• operating system (Linux, Windows, etc.)

• software (games, utilities, etc.)

The Operating System

Operating system (OS) is a piece of complex software layer that
manages a computer’s hardware.
Allows you to program without knowing (independant) of hardware
details.

• GNU/Linux, Mac OS X, FreeBSD, and Solaris

• long history; many innovations come from Unix systems

• Unix is multi-user and multi-tasking

• reliable server and workstation operating system

Linux

Linux is a multi-user operating system, you will have your own
account on the CSE machines, with a unique username and
password. Logging in to your CSE account, either from a lab
machine or from home, will give your access to your files and
settings. These are not to be shared with anyone else.

• logging into a Unix system gives you access to a terminal
window

• a terminal window is for text commands which the OS
executes

• common commands: ls, cd, mkdir, more, etc.

• many tasks can be performed through the graphical user
interface (GUI)

Programming Languages

Why don’t we program in English?

• it is too informal

• it is too big

What does ”Time flies like an arrow” mean?
So we invent a programming language that:

• is small

• is formal (syntax and grammar)

• is still reasonably intuitive for humans

Because programming language instructions are usually too
complex to execute directly, they must be translated into an even
simpler machine language.

The C Programming Language

Historical notes:

• created by Dennis Ritchie in the early 70’s at AT&T Bell Labs

• named so because it succeeded the B programming language

• designed as a high(er)-level language to replace assembler

• powerful enough to implement the Unix kernel

• in 1978 Dennis Ritchie and Brian Kernighan published
“The C Programming Language”

• now considered low-level, widely used for system and
application programming

Why C?

• classic example of an imperative language

• many libraries and learning resources

• widely used for writing operating systems and compilers as
well as industrial and scientifc applications

• provides low level access to machine

• language you must know if you want to work with hardware

The C Programming Language

Like most programming languages, C supports features such as:

• program comments

• declaring variables (data storage)

• assigning values to variables

• performing arithmetic operations

• performing comparison operations

• control structures, such as branching or looping

• performing input and output

Hello World

A Doing Thing

Programming or coding, i.e., the activity of writing computer
programs, is a practical skill, you can only get better at it if you
practice continually.

// Author : Kern ighan and R i t c h i e
// Date c r e a t e d : 1978
// A v e r y s i m p l e C program .

#i n c l u d e <s t d i o . h>

i n t main (v o i d) {
p r i n t f (” H e l l o w o r l d !\ n ”) ;

r e t u r n 0 ;
}

Hello World

A Doing Thing

Programming or coding, i.e., the activity of writing computer
programs, is a practical skill, you can only get better at it if you
practice continually.

// Author : Kern ighan and R i t c h i e
// Date c r e a t e d : 1978
// A v e r y s i m p l e C program .

#i n c l u d e <s t d i o . h>

i n t main (v o i d) {
p r i n t f (” H e l l o w o r l d !\ n ”) ;

r e t u r n 0 ;
}

Hello World

The program is complete, it compiles and performs a task. Even in
a few lines of code there are a lot of elements:

• a comment

• a #include directive

• the main function

• a call to a library function, printf

• a return statement

• semicolons, braces and string literals

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

A Closer Look

What does it all mean?

• //, a single line comment, use /* */ for block comments

• #include <stdio.h>, import the standard I/O library

• int main(...), the main function must appear in every
C program and it is the start of execution point

• (void), indicating no arguments for main

• printf(...), the usual C output function, in stdio.h

• ("Hello world!\n"), argument supplied to printf, a string
literal, i.e., a string constant

• \n, an escape sequence, special character combination that
inserts a new line

• return 0, a code returned to the operating system, 0 means
the program executed without error

The C Compiler

A C program must be translated into machine code to be run.
This process is known as compilation.
It is performed by a compiler.
We will use a compiler named dcc for COMP1511
dcc is actually a custom wrapper aroung a compiler named clang.
Another widely used compiler is called (gcc).

Compiling A Program

• To create a C program in the file hello.c from the terminal:
gedit hello.c &

• Once the code is written and saved, compile it:
dcc hello.c

• Run the program:
./a.out

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

The Task of Programming

Programming is a construction exercise.

• Think about the problem

• Write down a proposed solutions

• Break each step into smaller steps

• Convert the basic steps into instructions in the programming
language

• Use an editor to create a file that contains the program

• Use the compiler to check the syntax of the program

• Test the program on a range of data

ls

• Lists files in current directory (folder)

• Several useful switches can be applied to ls
I ls -l (provide a long listing)
I ls -a (list all file, i.e., show hidden files)
I ls -t (list files by modification time)
I Can combine options. For example, ls -la

mkdir

• mkdir directoryName

• Create (make) new directory called directoryName in the
current working directory

• a directory is like a folder in windows

• To verify creation, type ls

cd

• cd directoryName

• Change directory
I Change current directory to directoryName
I directoryName must be in the current working directory
I We will see how to use more complex names(paths) later

• Special directory names
I cd ..

I move up one directory (to parent directory)

I cd ~
I move to your home directory

