
Decimal Representation

• Can interpret decimal number 4705 as:

4 × 103 + 7 × 102 + 0 × 101 + 5 × 100

• The base or radix is 10
Digits 0 – 9

• Place values:
· · · 1000 100 10 1
· · · 103 102 101 100

• Write number as 470510
I Note use of subscript to denote base

Binary Representation

• In a similar way, can interpret binary number 1011 as:

1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

• The base or radix is 2
Digits 0 and 1

• Place values:
· · · 8 4 2 1
· · · 23 22 21 20

• Write number as 10112
(= 1110)

Hexadecimal Representation

• Can interpret hexadecimal number 3AF1 as:

3 × 163 + 10 × 162 + 15 × 161 + 1 × 160

• The base or radix is 16
Digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Place values:
· · · 4096 256 16 1
· · · 163 162 161 160

• Write number as 3AF116
(= 1508910)

Binary to Hexadecimal

0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

8 9 A B C D E F

1000 1001 1010 1011 1100 1101 1110 1111

• Idea: Collect bits into groups of four starting from right to left

• “pad” out left-hand side with 0’s if necessary

• Convert each group of four bits into its equivalent
hexadecimal representation (given in table above)

Binary to Hexadecimal

• Example: Convert 10111110001010012 to Hex:

1011 1110 0010 10012
B E 2 916

• Example: Convert 101111010111002 to Hex:

0010 1111 0101 1100

2 F 5 C16

Hexadecimal to Binary

• Reverse the previous process

• Convert each hex digit into equivalent 4-bit binary
representation

• Example: Convert AD516 to Binary:

A D 5

1010 1101 01012

Memory Organisation

• During execution programs variables are stored in memory.

• Memory is effectively a gigantic array of bytes.
COMP1521 will explain more

• Memory addresses are effectively an index to this array of
bytes.

• These indexes can be very large
up to 232 − 1 on a 32-bit platform
up to 264 − 1 on a 64-bit platform

• Memory addresses usually printed in hexadecimal (base-16).

Memory Organisation

In order to fully understand how pointers are used to reference
data in memory, here’s a few basics on memory organisation.

0xFFFFFFFF High Memory
0xFFFFFFFE

...

0x00000001
0x00000000 Low Memory

Memory

• computer memory is a large array of consecutive data cells or
bytes

• a variable will stored in 1 or more bytes

• on CSE machines a char occupies 1 byte, a an int 4 bytes, a
double 8 bytes

• The & (address-of) operator returns a reference to a variable.

• Almost C implementations & operator returns

• it is convenient to print memory addresses in Hexadecimal
notation

Variables in Memory

int k;

int m;

printf("address of k is %p\n", &k);

printf("address of m is %p\n", &m);

address of k is 0xbffffb80
address of m is 0xbffffb84

This means that k occupies the four bytes from 0xbffffb80 to

0xbffffb83, and m occupies the four bytes from 0xbffffb84 to

0xbffffb87.

Arrays in Memory

Elements of the array will be stored in consecutive memory
locations:

int array[5];

i=0;

while (i < 5) {

printf("address of array[%d] is %p\n", i, &array[i]);

}

address of array[0] is 0xbffffb60
address of array[1] is 0xbffffb64
address of array[2] is 0xbffffb68
address of array[3] is 0xbffffb6c
address of array[4] is 0xbffffb70

Size of a Pointer

Just like any other variable of a certain type, a variable that is a
pointer also occupies space in memory. The number of memory
cells needed depends on the computer’s architecture. For example:

• 32-bit platform pointers likely to be 4 bytes
e.g. CSE lab machines

• 64-bit platform pointers likely to be 8 bytes
e.g. many student machines

• tiny embedded CPU pointers could be 2 bytes
e.g. your microwave

Pointers

A pointer is a data type whose value is a reference to another
variable.

int *ip; // pointer to int

char *cp; // pointer to char

double *fp; // pointer to double

In most C implementations, pointers store the the memory address
of the variable they refer to.

Pointers

• The & (address-of) operator returns a reference to a variable.

• The * (dereference) operator accesses the variable refered to
by the pointer.

• For example:

int i = 7;

int *ip = &i;

printf("%d\n", *ip); // prints 7

*ip = *ip * 6;

printf("%d\n", i); //prints 42

i = 24;

printf("%d\n", *ip); // prints 24

Pointers

• Like other variables, pointers need to be initialised before they
are used .

• Like other variables, its best if novice programmers initialise
pointers as soon as they are declared.

• The value NULL can be assigned to a pointer to indicate it
does not refer to anything.

• NULL is a #define in stdio.h

• NULL and 0 interchangable (in modern C).

• Most programmers prefer NULL for readability.

Pointer Arguments

We’ve seen that when primitive types are passed as arguments to
functions, they are passed by value and any changes made to them
are not reflected in the caller.

void increment(int n) {

n = n + 1;

}

This attempt fails. But how does a function like scanf manage to
update variables found in the caller? scanf takes pointers to those
variables as arguments!

void increment(int *n) {

*n = *n + 1;

}

Pointer Arguments

Passing by reference

We use pointers to pass variables by reference! By passing the
address rather than the value of a variable we can then change the
value and have the change reflected in the caller.

int i = 1;

increment(&i);

printf("%d\n", i);

In a sense, pointer arguments allow a function to ‘return’ more
than one value. This greatly increases the versatility of functions.
Take scanf for example, it is able to read multiple values and it
uses its return value as error status.

Pointer Arguments

Classic Example

Write a function that swaps the values of its two integer
arguments.

Before we knew about pointer arguments this would have been
impossible, but now it is straightforward.

void swap(int *n, int *m) {

int tmp;

tmp = *n;

*n = *m;

*m = tmp;

}

Pointer Return Value

You should not find it surprising that functions can return pointers.
However, you have to be extremely careful when returning pointers.
Returning a pointer to a local variable is illegal - that variable is
destroyed when the function returns.
But you can return a pointer that was given as an argument:

int increment(int *n) {

*n = *n + 1;

return n;

}

Nested calling is now possible: increment(increment(&i));

Array Representation

C Array Representation

A C array has a very simple underlying representation, it is stored
in a contiguous (unbroken) memory block and a pointer is kept to
the beginning of the block.

char s[] = "Hi!";

printf("s:\t%p\t*s:\t%c\n\n", s, *s);

printf("&s[0]:\t%p\ts[0]:\t%c\n", &s[0], s[0]);

printf("&s[1]:\t%p\ts[1]:\t%c\n", &s[1], s[1]);

printf("&s[2]:\t%p\ts[2]:\t%c\n", &s[2], s[2]);

printf("&s[3]:\t%p\ts[3]:\t%c\n", &s[3], s[3]);

Array variables act as pointers to the beginning of the arrays!

Array Representation

Since array variables are pointers, it now should become clear why
we pass arrays to scanf without the need for address-of (&) and
why arrays are passed to functions by reference!
We can even use another pointer to act as the array name!

int nums[] = {1, 2, 3, 4, 5};

int *iptr = nums;

printf("%d\n", nums[2]);

printf("%d\n", iptr[2]);

Since nums acts as a pointer we can directly assign its value to the
pointer iptr!

Array Representation

We can even make a pointer point to the middle of an array:

int nums[] = {1, 2, 3, 4, 5};

int *iptr = &nums[2];

printf("%d %d\n", *iptr, iptr[0]);

So is there a difference between an array variable and a pointer?

int i = 5;

iptr = &i; // this is OK

nums = &i; // this is an error

Unlike a regular pointer, an array variable is defined to point to the
beginning of the array, it is constant and may not be modified.

Pointer Comparison

Pointers can be tested for equality or relative order.

double ff[] = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6};

double *fp1 = ff;

double *fp2 = &ff[0];

double *fp3 = &ff[4];

printf("%d %d\n", (fp1 > fp3), (fp1 == fp2));

Note that we are comparing the values of the pointers, i.e.,
memory addresses, not the values the pointers are pointing to!

Pointer Summary

Pointers:

• are a compound type

• usually implemented with memory addresses

• are manipulated using address-of(&) and dereference()

• should be initialised when declared

• can be initialised to NULL

• should not be dereferenced if invalid

• are used to pass arguments by reference

• are used to represent arrays

• should not be returned from functions if they point to local
variables

