
Debuggers

A debugger gives you control of program execution:

• normal execution (run, cont)
• stop at a certain point (break)
• one statement at a time (step, next)
• examine program state (print)

The gdb debugger

gdb – a line-based interactive debugger.
ddd – an X-windows-based interface for gdb.
To use programs with gdb (or ddd), they must be compiled with
the gcc compiler.
gdb (ddd) takes two arguments:

% gdb executable

E.g.

% gdb a.out [code]

(The core argument is used if you have a core image because the
operating system terminated the program)

gdb sessions

A session with gdb is a sequence of commands to control and
observe the executable.

$ gcc -Wall -g -o prog prog.c

$ gdb prog

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

(gdb) break f

Breakpoint 1 at 0x1082c: file prog.c, line 32.

(gdb) run

gdb sessions

Starting program:/prog

Enter a b c: 1 2 3

Breakpoint 1, f (i=1, j=2) at prog.c:32

32 a = i + j;

(gdb) next

33 b = i*i + j*j;

(gdb) next

34 return a*b;

(gdb) print a

$1 = 3

(gdb) print b

$2 = 5

(gdb) cont

...

Basic gdb commands

• quit – quits from gdb

• help [CMD] – on-line help
Gives information about CMD command.
• run ARGS – run the program
ARGS are whatever you normally use, e.g.

% ./prog < data

is achieved by:

(gdb) run < data

gdb status commands

• where – stack trace
Find which function the program was executing when it crashed.
Stack may also have references to system error-handling functions.
• up [N] – move “up” the stack
Allows you to skip to “scope” of a particular function in stack.
• list [LINE] — show code
Displays five lines either side of current statement.
• print EXPR – display expression values
EXPR may use (current values of) variables.
Special expression aat1 shows all of the array a.

gdb execution commands

• break [PROC|LINE] - set break-point
On entry to function PROC (or reaching line LINE), stop execution
and return control to gdb.
• next - single step (over functions)
Execute next statement; if statement is a function call, execute
entire function body.
• step - single step (into functions)
Execute next statement; if statement is a function call, go to first
statement in function body.
For more details see gdb’s on-line help.

Version Control

Any large, useful software system ...

• will undergo many changes in its lifetime

• multiple programmers making changes

• who may work on the code concurrently and independently

The process of code change needs to be managed so that

• changes produce ”consistent” versions of the system

• many programmers can easily work simultaneously

• we can roll back to earlier version if needed

• documentation of when, who, & why changes made

• multiple versions of system can be distributed, tested, merged

Version Control

Consider the following simple scenario:

• a software system contains a source code file x.c

• system is worked on by several teams of programmers

• Ann in Sydney adds a new feature in her copy of x.c

• Bob in Singapore fixes a bug in his copy of x.c

Ultimately, we need to ensure that

• all changes are properly recorded (when, who, why)

• both the new feature and the bug fix are in the next release

• if we later find bugs in old release, they can be fixed

Git

• distributed version control system - multiple repositories, no
”master”

• every user has their own repository

• created by Linux Torvalds for Linux kernel

• not better than competitors but better supported/more widely
used (e.g. github/bitbucket)

• at first stick with a small subset of commands

• substantial time investment to learn to use Git’s full power

Creating a git Repository

• Create repository git init

• Copy exiting repository git clone

Git uses the sub-directory .git to store a local repository.
Inside .git is stored all versions of all files under version control
(in clever efficient way).
If intereteste dtsartby reading about how git uses SHA-1 hashes.

Tracking a Project with Git

• Project must be in single directory tree.

• Usually don’t want to track all files in directory tree

• Don’t track binaries, derived files, temporary files, large static
files

• Use .gitignore files to indicate files never want to track

• Use git add file to indicate you want to track file

• Careful: git add directory will every file in file and
sub-directories

Git Commit

• A git commit is a snapshot of all the files in the project.

• Can return the project to this state using git checkout

• Beware if you accidentally add a file with confidential info to
git - need to remove it from all commits.

• git add copies file to staging area for next commit

• git commit -a if you want commit current versions of all files
being tracked

Git Push/Pull

• git push adds commits from your repository to a remote
repository

• git remote lets you give names to other repositories

• git pull adds commits from a remote repository to your
repository

Example: making Git Repository Public via Github

Github popular repo hosting site (see competitors e.g. bitbucket)
Github student accounts free for small number of repos
Github and competitors also let you setup collaborators, wiki, web
pages, issue tracking
Web access to git repo e.g. https://github.com/mirrors/linux

Example: making Git Repository Public via Github

Its a week after the COMP1511 assignment was due and you want
to publish your code to the world.
Create github account - assume you choose ilove1511 as your login
Create a repository - assume you choose my code for the repo
name
Add your ssh key (.ssh/id rsa.pub) to github (Account Settings
- SSH Public Keys - Add another public key)

cd ~/ass2

git remote add origin git@github.com:ilove1511/my_code.git

git push -u origin master

