
While Statements

• We often need to execute code (statements) many times.

• if statements only allow us to execute or not execute code. in
other words they allow us to execute code 0 or 1 times
while statements allow us to execute code 0 or more times

• Like if, while statements have a controlling expression
but while statements execute their body until
the controlling expression is false

while (EXPRESSION) {
stmt1;

stmt2;

...

stmtn;

}

While Statements

• C has other looping constructs - but while is all you need

• for loops can be a little more concise/convenient
we’ll see them later - for now use while

• Often use a loop counter variable to count loop repetitions

• Can then have a while loop execute n times.

while Loop - Loop Counter Example

// read an integer n

// print n asterisks

int loop_counter, n;

printf("How many asterisks? ");

scanf("%d", &n);

loop_counter = 0;

while (loop_counter < n) {

printf("*");

loop_counter = loop_counter + 1;

}

printf("\n");

while Loop - Loop Counter Pattern

Here is the programming pattern for a while that executes n times:

loop_counter = 0;

while (loop_counter < n) {

//

// statements the loop needs to perform

//

loop_counter = loop_counter + 1;

}



While Statements - Termination

• Can control termination (stopping) of while loops in many
ways.

• Easy to write while loop that do not terminate.

• Often a sentinel variable is used to stop a while loop
when acondition occurs in the body of the loop

while Loop - Sentinel Variable Example

// read numbers printing whether even or odd

// stop if zero read

int stop_loop, numbers;

stop_loop = 0;

while (stop_loop != 1) {

scanf("%d", &number);

if (number == 0) {

stop_loop = 1;

} else if (number % 2 == 1) {

printf("%d is odd.\n", number);

} else {

printf("%d is even.\n", number);

}

}

while Loop - Sentinel Variable Pattern

Here is the programming pattern for a while that executes n times:

stop_loop = 0;

while (stop_loop != 1) {

//

// statements the loop needs to perform

//

if (.......) {

stop_loop = 1;

}

//

// perhaps more statements

//

}

Nested While Loops

• Often need to nest while loops.

• Need a separate loop counter variable for each nested loop.

// print a square of 10x10 asterisks

int i, j;

i = 0;

while (i < 10) {

j = 0;

while (j < 10) {

printf("* ");

j = j + 1;

}

printf("\n");

i = i + 1;

}


