
ABSTRACT DATA TYPES (ADTS)

COMP1927 Computing 2 16x1

Sedgewick Chapter 4

ABSTRACTION

 To understand a system, it should be enough to

understand what its components do without knowing how

 Watching a television

 We operate the tv through its interface – remote control and buttons.

 We do not need to open the tv up and see inside to use it.

 When designing a new library, it is important to understand

 what are the abstract properties of the data types we want

provide?

 which operations do we need to create (destroy), query, and

manipulate objects of these types?

 Do we need to or want to know how FILE * is implemented? Or

just HOW to use it?

ABSTRACT DATA TYPES

 A data type is ...

 a set of values (atomic or structured values)

 a collection of operations on those values

 An abstract data type is ...

 an approach to implementing data types

 separates interface from implementation

 builders of the ADT provide an implementation

 Users/clients of the ADT see only the interface

 A client can not see the implementation through the
interface

 They do not know if you used an array, a linked list etc or
anything else.

 This allows the implementation to change without breaking
client code.

 Facilitates decomposing problems into smaller parts

ADTS IN C

 The interface is a contract between the client and

the implementation

 Defined in the .h file

 typedef of the ADT

 Function prototypes fix function names and types

 The implementation is the “inner workings” of the

ADT

 Implemented in .c file/s
 Structs – the actual representation of the data type

 function implementations

 static functions

 local typedefs

PUSHDOWN STACK OR LAST-IN, FIRST-OUT

(LIFO) QUEUE

 Two basic operations to manipulate a stack

 Insert (push) a new item

 Remove (pop) the most recently inserted item

 An operation to create a stack

 Create an empty stack

 An operation to query the state of the stack

 Check if stack is empty

 Applications

 backtracking search, function call stacks, evaluation of

expressions

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a

a

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b

a b

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b, push c

a b c

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b, push c, pop

a b

STACK ADT IMPLEMENTATION 1: USING

ARRAYS

 Array as stack

 fill items into s[0], s[1],....

 maintain a counter of the number of pushed items

 pre-allocate array given maximum number of elements

 Push a, push b, push c, pop, push d

a b d

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

a

• List as stack

• add node to front of the list when pushing

• take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

push (c)c ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

pop()ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

STACK ADT IMPLEMENTATION 2: USING LISTS

push (a)

push (b)

push (c)

pop()

push (d)

d ab

• List as stack

★ add node to front of the list when pushing

★ take node from front of the list when popping

EXAMPLE: BALANCING BRACKETS

 Example of stack ADT use on sample input:

 ([{ }])

Next char Stack Check

(start) (empty) -

((-

[([-

{ ([{ -

} ([{ vs }

] ([vs]

) (empty) (vs)

(eof) (empty) -

INFIX, PREFIX AND POSTFIX EXPRESSIONS

 Infix

 2 + 3

 Prefix

 + 2 3

 Postfix

 2 3 +

STACK ADT CLIENT EXERCISE: POSTFIX

EXPRESSION EVALUATION

 Task: Given an expression in postfix notation, return its value:

% ./eval_postfix “5 9 8 + 4 6 * * 7 + *”

2075

How can we evaluate a postfix expression?

• We use a stack

• When we encounter a number, push it

• When we encounter an operator, pop the two topmost numbers, apply

the operator to those numbers, and push the result on the stack

FIRST-IN, FIRST-OUT (FIFO) QUEUE

 Two basic operations to manipulate the queue

 insert (put) new item

 delete (get) the least recently inserted item

 An operation to create a queue

 Create an empty queue

 An operation to query the state of the queue

 Check if queue is empty

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

a b a

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

a b a b

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

put (c)a b a b c

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

put (c)

get()

a b b c

QUEUE ADT IMPLEMENTATION1: USING LISTS

 List as queue

 add node to end of the list when pushing

 take node from front of the list when removing

put(a)

put (b)

put (c)

get()

put (d)

a b b c d

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

a

put(a)

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

a b

put(a)

put (b)

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

a b c

put(a)

put (b)

put(c)

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

b c

put(a)

put (b)

put(c)

get()

QUEUE ADT IMPLEMENTATION 2: USING

ARRAYS

 Array as queue

 fill items into s[0], s[1],....

 maintain a counter for beginning and end of queue

 pre-allocate array given maximum number of elements

 roll over when reaching end of array

b c

put(a)

put (b)

put(c)

get()

put(d)

d

TESTING

 Testing cannot establish that a program is correct

 would need to show for all possible inputs it produces the

correct output

 This is impossible except in trivial cases

 We can only choose this subset well!

 Different types of parameters require different types of

testing

 numeric: check the value, +ve, -ve, 0, large values, boundary

cases etc.

 string: check the length, empty, 1 element, many elements

 properties like increasing order, decreasing order, random order

EXERCISE

 Think of some test cases for finding the maximum in

an un-ordered array

BLACK BOX VS WHITE BOX TESTING

 Black Box Testing:

 Testing code from the outside:

 Checks behaviour

 Does tested input result in the correct output ?

 Program does not know about the underlying implementation

 If the implementation changes the tests should still pass

 White Box Testing:

 Testing code from the inside:

 Checks code structure

 Tests internal functions

 Tests rely on and can access the implementation

ASSERT BASED TESTING

 How to use assert:

 use while developing, testing and debugging a program to make

sure pre- and postconditions are valid

 not in production code!

 it aborts the program, error message useful to the programmer,

but not to the user of the application

 Use exception handlers in production code to terminate

gracefully with a sensible error message (if necessary)

