COMP1927 16x1
Computing 2

C Outside the Style Guide,
Linked Lists and Function
Pointers

Compliling

® For compiling for normal use
gcc —Wall —~Werror —O —0 prog prog.c
® For compiling to run gdb or ddd or valgrind
gcc —Wall —Werror —gdwarf-2 —o prog prog.c
® Compiling with more than 1 c file, normal use

gcc —Wall -Werror —O —o0 prog prog.c f2.c f3.c

COMP1917 Style

® Required use of a restricted subset of C:

layout, use of brackets (always)

use only if and while

no side-effects in expressions

no conditional expressions

all functions have one return statement

But ... this style used in no texts or real code

COMP1927 Style

® layout: consistent indentation still required

® use of brackets:

® can omit if control structure owns a single statement

® put function start bracket on line after function header

® can use all C control structures

® if, switch, while, for, break, continue

COMP1927 Style (cont)

® can use assignment statements in expressions

® but you should continue to avoid other kinds of side-
effects

® can use conditional expressions
® butuse x=c?el:e2 withcare

® functions may have several return statements, loops
can have break, continue

® can make functions more concise, but possibly more
cryptic and make proofs harder, so we still avoid

5

COMP1927 Style (cont)

® Good: gives you more freedom and power

® more choice in how you express programs

® can write code which is more concise (simpler)

® Bad: gives you more freedom and power

® can write code which is more cryptic

® can lead to incomprehensible, unmaintainable code

For Loop example

® while version
sum = 0;
1 = 0;
while (i < 10) {
sum = sum + 1;

i++; //1 = 1i+1;
J

® for version
sum = 0;
for (i = 0; 1 < 10; i++)

sum += 1; //sum = sum + 1i;

Switch Statements

® If statements such as:

1f (colour == ‘r’){
print (“Red”) ;

lelse 1f (colour == ‘b’) {
printf (“Blue”) ;

telse 1f(colour == ‘g’) {
printf (“Green”);

}else{

printf ("Not valid”);

Switch Statements (cont)

Can be written as switch statements:

switch (colour) {
case ‘r’: printf (“Red”);

break;

case ‘b’: printf (“Blue”);
break;

case ‘g’ : printf (“Green”);
break;

default : printf (“Not wvalid”);
}

Note break is critical; if not present, falls
through to next case.

Exercise

® Write a function monthName(int) that
® Accepts a month number 1 = Jan..12=Dec
® Returns a string containing the month name
® Assume the string will be read-only
® Use a switch to decide on the month

® Suggest an alternative approach with an
array

Jumping Around

The return statement
® gives back result to caller of function

® terminates function (possibly "early")
The break statement

® allows early termination of a loop

The continue statement

® allows early termination of one loop iteration

They all help to avoid deeply nested if statements.

Conditional
Expressions

® If statements that compute a value
1t (y > 0) A

x = z+1;
} else {
X =z —-1;

}

® can be written as a conditional expression:

x = (y > 0) 2?2 z+1 : z-1;

Exercise Conditionals

Rewrite each of the following using or a
conditional expression or state why it can't
be written that way

//a

1if(x > 0)

y = x — 1;
else

y = x + 1;

/ /b
1f (
Yy
els

Z

x > 0)
= x - 1;
e

= x + 1;

//cC
if(x > 0){
y = x — 1;
z = x + 1;
lelse{

y = x + 1;

Z = x - 1;
}

Assignments In
Expressions

C assignment statements are really expressions
they return a result: the value being assigned
the return value is generally ignored

Frequently, assignment is used in loop continuation
tests

® to combine the test with collecting the next value

® to make the expression of such loops more concise

Assignments In
EXpressions (cont)

nchars = 0;

ch = getchar();

while (ch != EOF) {
nchars++;

ch = getchar();
}

can be written as
nchars = 0;
while ((ch = getchar()) != EOF)

nchars++;

What does this code
do?

vold whatDoesItDo () {

char ch;

while ((ch = getchar()) != EOF) {
if(ch == ‘\n’) break;
1f(ch == ‘Yg’') return;
1f(!isalpha(ch)) continue;

printf (“%c”, ch);

}
printf (“"Thanks!\n”);

What Is a linked list?

® sequential collection of items (i.e. no random
access)

® we can only get to the second by accessing the
first, and so on

we can’t access the nth element of a list directly
easy to re-arrange

® deleting or inserting is simple

® self-referent structure (may be cyclic)

® alist element contains a link to another list
element

What Is a linked list?

A linked list is a set of items where each item is part of a node
that also contains a link to a node. (We also call the list items
list elements)

The final element:
1. contains a null link, pointing to no node, or

2. refers to a dummy node (also called sentinel) containing no
item

3. may be the first node (hence the list is circular)

What Is a linked list?

A possible C implementation

insert definition for
/ Ttem here

typedef int Item;

typedef struct node * link; Sedgewick
struct node {

Item item;

link next;

s

ritem nexp item next
5 »! 3 IX

file://///localhost/Users/keller/Teaching/11s1/lectures/01/Week01.key

Common Operations

Memory allocation

link x = malloc (sizeof *x); // RIGHT
link y = malloc(sizeof (struct node)); //RIGHT
link z = malloc(sizeof(link)); //WRONG

Traversing a list

for (curr = start; curr != NULL; curr = curr->next) {
// do something with the node

Exercise

® Write a function to insert node at the beginning
of the list

link i1nsertFront(link list, link newNode) ;

® Could we use this prototype instead ?

vold insertFront (link list, link newNode) ;

® Write a function to insert node at the end of the
list

link i1nsertEnd(link list, link newNode) ;

Exercise

Implement a function which given a linked list, reverses
the order of items

link reverse (link list) {

Deletion on lists

® Delete an item from a linked list (see
lecture code for implementation)
//Remove a given node from the list

//and return the start of the list
link deleteItem (link 1ls, link n);

Problem: deletion

® Deletion is awkward, as we always have to
keep track of the previous node

® Can we delete a node if we only have the
pointer to the node itself?

® We may need to traverse the whole list (if we

have a reference to the head) to find the
predecessor of curr!

® |dea: every node stores a link to the previous
node, in addition to the link to the next node

Doubly Linked Lists

- . - .

nextl [brev item nextl [brev ‘ item nextl

[prev ‘ item

® Move forward and backward in such a list
® Delete node in a constant number of steps

typedef struct dnode * dlink;
typedef struct dnode {

ITtem item;

dlink next;

dlink prev;
b

Doubly linked lists

Deleting nodes
® easier, more efficient

Other basic list operations

® pointer to previous node is necessary in many
operations, doesn’t have to be maintained
separately for doubly linked lists

® twice the number of pointer manipulations
necessary for most list operations

® memory overhead to store additional pointer

Function Pointers

® C can pass functions by passing a pointer to
them.

® Function pointers ...

® are references to memory addresses of
functions

® are pointer values and can be
assigned/passed

Function Pointers

® E.g. a pointer to a function mapping
Int — int
int (*fun) (1nt)

® Function pointer variables/parameters are
declared as:

typeOfReturnValue (*fname)(typeOfArguments)

Example

int square (int x){ return x*x;}
int timesTwo (int x) {return x*2;}

int (*fp) (int);

fp = □ //fp points to the square function
int n = (*fp) (10); //call the square function with input 10
fp = timesTwo; //works without the &

//fp points to the timesTwo function

n = (*fp) (2); //call the timesTwo function with input 2
n = fp(2); //can also use normal function call

//notation

ngher -order Functions

Functions that get other functions as arguments, or return
functions as a result

® Example: the function traverse takes a list and a function
pointer as argument and applies the function to all nodes in
the list

void printList(link Is){
link curr = Is;
while(curr '= NULL)Y
printf(“%d “,curr->data); //Process the node
curr = curr->next;

}
}

/[apply function f to all nodes in Is
void traverse (link Is, void (*f) (link))}{
link curr = Is;
while(curr '= NULL){
(*f) (curr);

curr = curr->next;

Using Function pointers

void printNode(link Is){
if(Is '= NULL){
printf("%d->",|s->data);
}
}

void traverse (link Is, void (*f) (link));

//To call the function

//[Function must have matching prototype
traverse(myList,printNode);
traverse(myList,printGrade);

void printGrade(link Is){
if(Is I= NULL){
if(Is->data>= 85){
printf("HD ");
}
else {
printf("FL ");
}
}
}

Valgrind Demo

® Valgrind is useful for
® Finding memory leaks
® Not freeing memory that you malloced
® Finding memory errors
® Memory errors

® lllegally trying access memory

Exercise

® Consider this alternate linked list definition:

typedef int Ttem;

typedef struct node * 1link;
struct node {

Item item;

link next;

i
typedef struct listImp * List;
struct listImp/{

link first;
link last;

file://///localhost/Users/keller/Teaching/11s1/lectures/01/Week01.key

A

Exercise (cont

Draw an empty list

Suppose we insert items 1, 2 and 3 at the
end of an empty list

Draw the list
How many struct nodes would we have?

How many struct listimps would we have?

. Write code to create a new Empty List and
to insert an element at the end of the list

