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Problems, Algorithms, Programs 

and Processes
• Problem: A problem that needs to be 

solved

• Algorithm: Well defined instructions for 

completing the problem

• Program: Implementation of the algorithm 

in a particular programming language

• Process: An instance of the program as it 

is being executed on a particular machine



Analysis of software

• What makes software "good"?

• returns expected result for all valid inputs 

• behaves "sensibly" for non-valid inputs

• clear code, easy to maintain/modify 

• interface is clear and consistent (API or GUI)

• returns results quickly (even for large inputs)  

Ie. It is efficient

• We may sometimes also be interested in other 

measures 

• memory/disk space, network traffic, disk IO etc



Algorithm Efficiency
• The algorithm is by far the most 

important determinant of the efficiency of 

a program

• Small speed ups in terms of operating 

systems, compilers, computers and 

implementation details are irrelevant

• May give small speed ups but usually 

only by a small constant factor 



Determining Algorithm 

Efficiency
• At the design stage

- Theoretical approach

- complexity theory

• After the testing stage

- Once it is implemented and correct 

you can empirically evaluate 

performance eg using the time 

command



Timing

• Note we are not interested in the absolute 

time it takes to run.

• We are interested in the relative time it 

takes as the problem increases

• Absolute times differ on different machines 

and with different languages



Complexity Theory Example

1. int linearSearch(int a[], int n, int key){

2. for indexes from 0 to n-1

3. if key equals current element array

4. return current index

5. return -1

6.}

• What is the worst case cost?

- When does this occur?

- How many comparisons between data 

instances were made?



Complexity Example
• How many times does each line run in the 

worst case?

C0: line 2: For loop n+1 times

C1: line 3: n comparisons

C2: line 4: 0 times (worst case)

C3: line 5: 1 time (worst case)

Total: C0(n+1) + C1(n) +  C3 = O(n)

• For an unsorted sequence that is the best 

we can do



Informal Definition of Big-O 

Notation
• We express complexity using big-O notation

• Represents the asymptotic worst case (unless 

stated otherwise) time complexity

• Big-O expressions do not have constants or low-

order terms as when n gets larger these do not 

matter 

• For example: For a problem of size n, if the cost of 

the worst case is

• 1.5n2 +3n +10

• in Big-O notation would be O(n2)



Big O-notation Formal 

Definition
The big O-notation is used to classify the work complexity of 
algorithms

Definition: A function f(n) is said to be in (the set) O(g(n)) if 
there exist constants c and N0 such that f(n) < c * g(n) for all n 
> N0



Empirical Analysis Linear 

Search
• Use the ‘time’ command in linux. 

Run on different sized inputs

time ./prog < input > /dev/null

not interested in real-time

interested in user-time

What is the relationship between

• input size

• time

Size of 

input(n)
Time

100000

1000000

10000000

100000000



Predicting Time
• If I know my algorithm is quadratic and I 

know that it takes 1.2 seconds to run on a 

data set of size 1000

• Approximately how long would you expect 

to wait for a data set of size 2000?

• What about 10000?

• What about 100000?

• What about 1000000?

• What about 10000000?



Searching in a Sorted Array

• Given an array a of N elements, with a[i] <= a[j] for 

any pair of indices i,j, with i <= j < N,

• search for an element e in the array 

int a[N];         // array with N items

int found = 0;

int i = 0;

while ((i < N) && (!found)){

found = (a[i] == e);

i++;  

}



Searching in a Sorted Array

• Given an array a of N elements, with a[i] <= a[j] for 

any pair of indices i,j, with i <= j < N,

• search for an element e in the array 
int a[N];         // array with N items

int found = 0;

int finished = 0;

int i = 0;

while ((i < N) && (!found) && (!finished)){

found = (a[i] == e);

finished = (e < a[i]);

i++;  

}

exploit the fact that a is sorted



Searching in a Sorted Array

• How many steps are required to search an 

array of N elements

Best case:   TN = 1

Worst case: TN = N

Average: TN = N/2

• Still a linear algorithm, like searching in a 

unsorted array



Binary Search
• We start in the middle of the array:

• if a[N/2] == e, we found the element and we’re done

• and, if necessary, `split’ array in half to continue 

search

• if a[N/2] < e, continue search on a[0] to a[N/2 -1]

• if a[N/2] > e, continue search on a[N/2+1] to a[N-1]

• This algorithm is called binary search.



Binary Search
See binary.c for implementation

• We maintain two indices, l and r, to denote leftmost and 

rightmost array index of current part of the array

• initially l=0 and r=N-1

• iteration stops when:

• left and right index define an empty array, element not 

found

• Eg l > r

• a[(l+r)/2] holds the element we’re looking for

• if: a[(l+r)/2] is larger than element, continue search on left

a[l]..a[(l+r)/2-1]

else continue search on right

a[(l+r)/2+1]..a[r]



Binary Search
• How many comparisons do we need for

• an array of size N?

• Best case: 

• TN = 1

• Worst case:

• T1 = 1

• TN = 1 + TN/2

• TN =  log2 N + 1

• O(log n)

• Binary search is a

• logarithmic algorithm 0
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Big-O Notation
• All constant functions are in O(1)

• All linear functions are in O(n)

• All logarithmic function are in the same class O(log(n))

• O(log2(n)) = O(log3(n))= .... 

• (since logb(a) * loga(n) = logb(n))

• We say an algorithm is O(g(n)) if, for an input of size n, the 

algorithm requires T(n) steps, with T(n) in O(g(n)), and 

O(g(n)) minimal

• binary search is O(log(n))

• linear search is O(n)

• We say a problem is O(g(n)) if the best algorithm is O(g(n))

• finding the maximum in an unsorted sequence is O(n)



Common Categories
• O(1): constant - instructions in the program are executed a 

fixed number of times, independent of the size of the input

• O( log N): logarithmic - some divide & conquer algorithms with 

trivial splitting and combining operations

• O(N) : linear - every element of the input has to be processed, 

usually in a straight forward way

• O(N * log N): Divide &Conquer algorithms where splitting or 

combining operation is proportional to the input

• O(N2):  quadratic. Algorithms which have to compare each 

input value with every other input value. Problematic for large 

input

• O(N3) : cubic, only feasible for very small problem sizes

• O( 2N): exponential, of almost no practical use 



Complexity Matters
n log n nlogn n^2 2^n

10 4 40 100 1024

100 7 700 10000 1.3E+30

1000 10 10000 1000000 REALLY 

BIG

10000 14 140000 100000000

100000 17 1700000 10000000000

1000000 20 20000000 1000000000000



Exercise
What would be the time complexity of inserting 

an element at the beginning of 

• a linked list

• an array

What would be the time complexity of inserting 

an element at the end of 

• a linked list

• an array


