
Compilation, Debugging and

Makefiles

Computing 2 16x1

THE C COMPILER (GCC)

 applies source-to-source transformation (pre-

processor)

 compiles source code to produce object files

 links object files and libraries to produce

executables

COMPILATION AND LINKING WITH GCC

 gcc –c list.c

 Produces list.o from list.c and list.h

 gcc –c string.c

 Produces string.o from string.c and string.h

 gcc –c main.c

 Produces main.o from main.c, list.h, string.h

 gcc –o a.out main.o string.o list.o

 Links main.o, string.o, list.o and libraries to create an

executable called a.out

DEBUGGING

 Initial versions of programs always have errors

 Symptoms of errors

 Program quits with fatal error (eg segfault)

 Program runs forever (infinite loop)

 Program does not produce expected results

 Errors can be caused by

 Misunderstanding programming language constructs

 Misunderstanding the problem

 Incorrect logic

 Carelessness (uninitialized, off-by-one, pointers)

DEBUGGING

 Debugging: process of

 Finding the location/s of incorrect code

 Fixing incorrect code that causes error

 Debuggers: software tools that

 Assist in the process of debugging

 By allowing detailed observation of execution state

 Critical part of debugging

 Narrowing focus to small region of large code/state

DEBUGGING

 Testing can help debugging

 Test cases for boundary conditions (eg. Empty list)

 Sequence of tests revealing

 Trigger points .. ok before, fails after

 Patterns of behaviour … eg. Always one more than expected

 Use deduction to identify/explain patterns.

 In general: run more tests before resorting to

debugger

GDB: THE GNU DEBUGGER

 gdb provides facilities to

 Control execution of program

 Step by step execution, breakpoints

 View intermediate state of program

 Values stored in program variables

 Plain gdb uses a command-line interface

 ddd provides a GUI wrapper around gdb.

 Must be compiled with –gdwarf-2 option

BASIC GDB COMMANDS

 quit: quits from gdb

 help [CMD] : on-line help

 run ARGS: run the program

 ARGS are whatever you normally use eg.

 $ xyz < data

 Would be run in gdb like

 (gdb) run < data

BASIC GDB COMMANDS

 where: stack trace

 Find which function the program was executing when it

crashed.

 Stack may also have references to system error-

handling functions

 up [N]: move down the stack

 Allows you to skip to scope of a particular function

 list [LINE]: show code

 Displays five lines either side of current statement

 print EXPR: display expression values

 EXPR may use (current values of) variables

GDB EXECUTION COMMANDS

 break [FUNC|LINE] : set break-point

 Stop execution and return control to gdb on entry to

function FUNC or on reaching line LINE

 next: single step (over functions)

 execute next statement

 if the statement is a function call, execute the whole

function

 step: single step (into functions)

 Execute next statement

 if statement is a function call, go to first statement in

function body

 For more details see gdb’s on-line help

EXERCISE: MONITORING PROGRAM

EXECUTION

 Use GDB to examine the execution of the following:

 Iterative factorial function fac0.c

 Recursive factorial function fac.c

 Iterative list traversal List.c

 Do each of the following:

 Set a breakpoint

 Run the program with command line arguments

 Check the stack

 Display the values of variables

 Continue execution after the breakpoint

BUILDING SOFTWARE SYSTEMS

 Software systems need to be built/rebuilt

 During development phase

(change,compile,test,repeat)

 If distributed in source code form (assists portability)

 How can we easily build C program from

 Multiple files and libraries

 Re-compiling only what is necessary

MAKEFILES

 Make is a software configuration tool that

 specifies dependencies between software components

 controls compilation when source code is updated

 produces "minimal required recompilation" on update

 In fact, it can be used for any task which involves

 multiple inter-dependent files

 need to produce some files from others

MAKEFILES…

 make is driven by dependencies given in a

Makefile

 A dependency specifies

target : source1 source2 ...

commands to build target from sources

 e.g.

eva1: eval.o tokens.o stack1.o

gcc -o eva1 eval.o tokens.o stack1.o

 Rule: target is rebuilt if older than any sourcei

EXAMPLE MAKEFILE

game : main.o list.o string.o

gcc -o game main.o list.o string.o -lm

main.o : main.c list.h string.h

gcc -Wall -Werror –O -c main.c

list.o : list.c list.h

gcc -Wall -Werror –O -c list.c

string.o : string.c

gcc -Wall -Werror –O -c string.c

clean :

rm -f *.o core

clobber : clean

rm -f game

HOW MAKE WORKS

 The make command behaves as:

 make(target):

Find makefile rule for the target

for each S in Sources { make(S) }

if (no sources OR any source is newer than target){

perform Action to rebuild target

}

EXAMPLE MAKEFILE REVISISTED

CC = gcc

CFLAGS = -Wall –Werror –O

LDFLAGS = -lm

game : main.o list.o string.o

$(CC) -o game main.o list.o string.o ($LDFLAGS)

main.o : main.c list.h string.h

$(CC) $(CFLAGS) -c main.c

list.o : list.c list.h

$(CC) $(CFLAGS) -c list.c

Etc…

RUNNING MAKE

 To build the first target in the makefile just type

 make

 If make arguments are targets, build just those

targets:

 make world.o

 make clean

 make clobber

 The -n option instructs make

 to tell what it would do to create targets

 but don't execute any of the commands

