Recursion

COMP1927 16x1

Sedgewick Chapter 5
Recursive Functions

• problems can sometimes be expressed in terms of a simpler instance of the same problem

• Example: factorial

 • \(1! = 1\)
 • \(2! = 1 * 2\)
 • \(\ldots\)
 • \((N-1)! = 1 * 2 * 3 * \ldots * (N-1)\)
 • \(N! = 1 * 2 * 3 * \ldots * (N-1) * N\)

\[2! = 1! * 2\]
\[N! = (N-1)! * N\]
Recursive Functions

• Solving problems recursively in a program involves
 • Developing a function that calls itself
 • Must include
 • Base Case: aka stopping case: so easy no recursive call is needed
 • Recursive Case: calls the function on a ‘smaller’ version of the problem
Iteration vs Recursion

• **Compute** $N! = 1 \times 2 \times 3 \times \ldots \times N$

```c
//An iterative solution
int factorial(int N){
    result = 1;
    for (i = 1; i <= N; i++)
        result = i * result;
    return result;
}
```

• Alternative Solution: factorial calls itself recursively

```c
int factorial (int N) {
    if (N == 1) {
        } else {
        return N * factorial (N-1);
    }
}
```
Bad Fibonacci

• Sometimes recursive code results in horribly in-efficient code that re-evaluates things over and over.

• 2^n calls: $O(k^n)$ - exponential

• Exponential functions can only be used in practice for very small values of n

```c
//Code to return the nth fibonacci number
//0 1 1 2 3 5 8 13 21
int badFib(int n){
    if(n == 0) return 0;
    if(n == 1) return 1;
    return badFib(n-1) + badFib(n-2);
}
```
Why badFib is bad

- Tracing calls on BadFib produces a tree of calls where intermediate results are recalculated again and again.
A linked list can be described recursively

- A list is comprised of a
 - head (a node)
 - a tail (the rest of the list)

```c
typedef struct node * link;

struct node{
    int item;
    link next;
};
```
Recursive List Functions

• We can define some list operations as recursive functions:
 • `length`: return the length of a list
 • `sumOfElems`: return the length of a list
 • `printList`: print the list
 • `printListReverse`: print out the list in reverse order
• Recursive list operations are not useful for huge lists
 • The depth of recursion may be proportional to the length of the list
Recursive List Functions

```c
int length (link ls) {
    if (ls == NULL) {
        return 0;  // base case
    }
    return 1 + length (ls->next);  // recursive case
}
```

```c
int sumOfElems (link ls) {
    if (ls == NULL) {
        return 0;  // base case
    }
    return (ls->item + sumOfElems(ls->next));  // recursive case
}
```
Recursive List Functions

```c
void printList(link ls){
    if(ls != NULL){
        printf("%d
",ls->item);
        printList(ls->next);
    }
}

//To print in reverse change the
//order of the recursive call and
//the printf
void printListReverse(link ls){
    if(ls != NULL){
        printListReverse(ls->next);
        printf("%d
",ls->item);
    }
}
```
Divide and Conquer

Basic Idea:

• divide the input into two parts
• solve the problems recursively on both parts
• combine the results on the two halves into an overall solution
Divide and Conquer

Divide and Conquer Approach for finding maximum in an unsorted array:

- Divide array in two halves in each recursive step

 Base case
 - subarray with exactly one element: return it

 Recursive case
 - split array into two
 - find maximum of each half
 - return maximum of the two sub-solutions
Iterative solution

//iterative solution O(n)
int maximum(int a[], int n){
 int a[N];
 int max = a[0];
 int i;
 for (i=0; i < n; i++){
 if (a[i] > max){
 max = a[i];
 }
 }
 return max;
}
//Divide and conquer recursive solution
int max (int a[], int l, int r) {
 int m1, m2;
 int m = (l+r)/2;
 if (l==r) {
 return a[l];
 }
 //find max of left half
 m1 = max (a,l,m);
 //find max of right half
 m2 = max (a, m+1, r)
 //combine results to get max of both halves
 if (m1 < m2) {
 return m2;
 } else {
 return m1;
 }
}
Complexity Analysis

How many calls of max are necessary for the divide and conquer maximum algorithm?

- Length = 1
 \[T_1 = 1 \]

- Length = \(N > 1 \)
 \[T_N = T_{N/2} + T_{N/2} + 1 \]

- Overall, we have
 \[T_N = N + 1 \]

In each recursive call, we have to do a fixed number of steps (independent of the size of the argument)

- \(O(N) \)
Recursive Binary Search

Maintain two indices, l and r, to denote leftmost and rightmost array index of current part of the array
- initially $l=0$ and $r=N-1$

Base cases:
- array is empty, element not found
- $a[(l+r)/2]$ holds the element we’re looking for

Recursive cases: $a[(l+r)/2]$ is
- larger than element, continue search on $a[l]..a[(l+r)/2-1]$
- smaller than element, continue search on $a[(l+r)/2+1]..a[r]$

$O(\log(n))$