SEARCHING AND TREES

o COMP1927 Computing 16x1
o Sedgewick Chapters 5, 12

Searching

o Storing and searching sorted data:

o Dilemma: Inserting into a sorted sequence

- Finding the insertion point on an array O(log n) but then we have to move everything along to create room for the new item
- Finding insertion point on a linked list O(n) but then we can add the item in constant time.
- o Can we get the best of both worlds?

TREE TERMINOLOGY

- o Trees are branched data structures consisting of nodes and links (edges), with no cycles
- o each node contains a data value
- o each node has links to $\leq k$ other nodes (*k*=2 below)

TREES AND SUBTREES

Trees can be viewed as a set of nested structures:
 each node has k possibly empty subtrees

USES OF TREES

o Trees are used in many contexts, e.g. representing hierarchical data structures (e.g. expressions)

o efficient searching (e.g. sets, symbol tables, ...)

SPECIAL PROPERTIES OF SOME TREES

- o M-ary tree: each internal node has exactly M children
- o Ordered tree: constraints on the data/keys in the nodes
- o Balanced tree: a tree with a minimal height for a given number of nodes
- o Degenerated tree: a tree with the maximal height for a given number of nodes

BINARY TREES

- o For much of this course, we focus on binary trees (*k=2*) Binary trees can be defined recursively, as follows:
- o A binary tree is either
 - empty (contains no nodes)
 - consists of a node, with two subtrees

 each node contains a value
 the left and right subtrees are *binary trees*

... TREE TERMINOLGY

o Node level or depth = path length from root to node

- Depth of the root is 0
- Depth of a node is one higher than the level of its parent
- o We call the length of the longest path from the root to a node the height of a tree

BINARY TREES: PROPERTIES

o A binary tree with n nodes has a height of

- at most
 - on-1 (if degenerate)

 at least 		log ₂ 10	3
ofloor(log2(n)) (if balance	ed)	log ₂ 100	6
		log ₂ 1000	9
		log ₂ 10000	13
		log ₂ 100000	16

These properties are important to estimate the runtime complexity of tree algorithms!

EXAMPLES OF BINARY SEARCH TREES:

o Shape of tree is determined by the order of insertion

EXERCISE: INSERTION INTO BSTS

 For each of the sequences below start from an initially empty binary search tree

- show the tree resulting from inserting the values in the order given
- What is the height of each tree?
- o (a) 4 2 6 5 1 7 3
- o(b) 5 3 6 2 4 7 1
- o(c) 1 2 3 4 5 6 7

BINARY TREES IN C

A binary tree is a generalisation of a linked list:

- nodes are a structure with two links to nodes
- empty trees are NULL links

typedef struct treenode *Treelink;

```
struct treenode {
    int data;
    Treelink left, right;
```

SEARCHING IN BSTS

```
o Recursive version
// Returns non-zero if item is found,
// zero otherwise
int search(TreeLink n, Item i) {
    int result;
    if(n == NULL) {
      result = 0;
    }else if(i < n->data) {
       result = search(n->left,i);
    }else if(i > n->data)
       result = search(n->right,i);
    }else{ // you found the item
      result = 1;
    }
    return result;
```

* Exercise: Try writing an iterative version

INSERTION INTO A BST

o Cases for inserting value V into tree T:

- T is empty, make new node with V as root of new tree
- root node contains V, tree unchanged (no dups)
- V < value in root, insert into left subtree (recursive)
- V > value in root, insert into right subtree (recursive)
- **o** Non-recursive insertion of V into tree T:
 - search to location where V belongs, keeping parent
 - make new node and attach to parent
 - whether to attach L or R depends on last move

BINARY TREES: TRAVERSAL

o For trees, several well-defined visiting orders exist:

- Depth first traversals
 - preorder (NLR) ... visit root, then left subtree, then right subtree
 - inorder (LNR) ... visit left subtree, then root, then right subtree
 - postorder (LRN) ... visit left subtree, then right subtree, then root
- Breadth-first traversal or level-order ... visit root, then all its children, then all their children

EXAMPLE OF TRAVERSALS ON A BINARY TREE

o Insertion into a binary search tree is easy:

- find location in tree where node to be added
- create node and link to parent

o Deletion from a binary search tree is harder:

- find the node to be deleted and its parent
- unlink node from parent and delete
- replace node in tree by ... ???

- o Easy option ... don't delete; just mark node as deleted
 - future searches simply ignore marked nodes
- o If we want to delete, three cases to consider ...
 - zero subtrees ... unlink node from parent
 - one subtree ... replace node by child
 - two subtrees ... two children; one link in parent

o Case 1: value to be deleted is a leaf (zero subtrees)

o Case 1: value to be deleted is a leaf (zero subtrees)

o Case 2: value to be deleted has one subtree

o Case 2: value to be deleted has one subtree

o Case 3a: value to be deleted has two subtrees

- o Replace deleted node by its immediate successor
 - The smallest (leftmost) node in the right subtree

o Case 3a: value to be deleted has two subtrees

BINARY SEARCH TREE PROPERTIES

o Cost for searching/deleting:

 Worst case: key is not in BST – search the height of the tree

 \circ Balanced trees – O(log₂n)

 \circ Degenerate trees – O(n)

- o Cost for insertion:
 - Always traverse the height of the tree
 Balanced trees O(log₂n)
 Degenerate trees O(n)