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SEARCHING

 Storing and searching sorted data:

 Dilemma: Inserting into a sorted sequence

 Finding the insertion point on an array – O(log 

n) but then we have to move everything along 

to create room for the new item

 Finding insertion point on a linked list O(n) but 

then we can add the item in constant time.

 Can  we get the best of both worlds?



TREE TERMINOLOGY

 Trees are branched data structures consisting of 

nodes and links (edges), with no cycles 

 each node contains a data value 

 each node has links to ≤ k other nodes (k=2

below) 



TREES AND SUBTREES

 Trees can be viewed as a set of nested structures: 

each node has k possibly empty subtrees 



USES OF TREES

 Trees are used in many contexts, e.g. representing 

hierarchical data structures (e.g. expressions) 

 efficient searching (e.g. sets, symbol tables, ...) 



SPECIAL PROPERTIES OF SOME TREES

 M-ary tree: each internal node has exactly M 

children

 Ordered tree: constraints on the data/keys in the 

nodes

 Balanced tree: a tree with a minimal height for a 

given number of nodes

 Degenerated tree: a tree with the maximal height for 

a given number of nodes



BINARY TREES

 For much of this course, we focus on binary 

trees (k=2) Binary trees can be defined 

recursively, as follows: 

 A binary tree is either 

 empty (contains no nodes) 

 consists of a node, with two subtrees 

each node contains a value 

 the left and right subtrees are binary trees



…TREE TERMINOLGY

 Node level or depth = path length from root to node 

 Depth of the root is 0

 Depth of  a node is one higher than the level of its parent

 We call the length of the  longest path from the root to a 

node the height of a tree
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BINARY TREES: PROPERTIES

 A binary tree with n nodes has a height of

 at most 

n-1 (if degenerate) 

 at least 

 floor(log2(n)) (if balanced)

These properties are important to estimate the 

runtime complexity of tree algorithms! 

log2 10 3

log2 100 6

log2 1000 9

log2 10000 13

log2 100000 16



EXAMPLES OF BINARY SEARCH TREES: 

 Shape of tree is determined by the order of insertion



EXERCISE: INSERTION INTO BSTS

 For each of the sequences below start from an 

initially empty binary search tree 

 show the tree resulting from inserting the values in the 

order given 

 What is the height of each tree?

 (a) 4 2 6 5 1 7 3 

 (b) 5 3 6 2 4 7 1 

 (c) 1 2 3 4 5 6 7 



BINARY TREES IN C

A binary tree is a generalisation of a linked list:

 nodes are a structure with two links to nodes

 empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {

int data;

Treelink left, right;

}



SEARCHING IN BSTS

 Recursive version 
// Returns non-zero if item is found,
// zero otherwise
int search(TreeLink n, Item i){

int result;
if(n == NULL){

result =  0;
}else if(i < n->data){

result = search(n->left,i);
}else if(i > n->data)

result = search(n->right,i);
}else{ // you found the item 

result = 1;
}
return result;

} 

* Exercise: Try writing an iterative version



INSERTION INTO A BST

 Cases for inserting value V into tree T: 

 T is empty, make new node with V as root of new tree 

 root node contains V, tree unchanged (no dups) 

 V < value in root, insert into left subtree (recursive) 

 V > value in root, insert into right subtree (recursive) 

 Non-recursive insertion of V into tree T: 

 search to location where V belongs, keeping parent 

 make new node and attach to parent 

 whether to attach L or R depends on last move 



BINARY TREES: TRAVERSAL

 For trees, several well-defined visiting orders exist: 

 Depth first traversals

preorder (NLR) ... visit root, then left subtree, then 

right subtree 

inorder (LNR) ... visit left subtree, then root, then 

right subtree 

postorder (LRN) ... visit left subtree, then right 

subtree, then root 

 Breadth-first traversal or level-order ... visit root, then 

all its children, then all their children 



EXAMPLE OF TRAVERSALS ON A BINARY TREE

 Pre-Order: 4 2 1 3 8 6 9

 In-Order: 1 2 3 4 6 8 9

 Post-Order 1 3 2 6 9 8 4

 Level-Order: 4 2 8 1 3 6 8



DELETION FROM BSTS

 Insertion into a binary search tree is easy:

 find location in tree where node to be added 

 create node and link to parent 

Deletion from a binary search tree is harder: 

 find the node to be deleted and its parent 

 unlink node from parent and delete 

 replace node in tree by ... ??? 



DELETION FROM BSTS…

 Easy option ... don't delete; just mark node as 

deleted 

 future searches simply ignore marked nodes 

 If we want to delete, three cases to consider ...

 zero subtrees ... unlink node from parent 

 one subtree ... replace node by child 

 two subtrees ... two children; one link in parent 



DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero subtrees) 



DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero subtrees) 



DELETION FROM BSTS

 Case 2: value to be deleted has one subtree 



DELETION FROM BSTS

 Case 2: value to be deleted has one subtree 



DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees 

 Replace deleted node by its immediate successor

 The smallest (leftmost) node in the right subtree 



DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees 



BINARY SEARCH TREE PROPERTIES

 Cost for searching/deleting:

 Worst case: key is not in BST – search the height of 

the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

 Cost for insertion:

 Always traverse the height of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)


