
Priority Queues and Heaps
Computing 2 COMP1927 16x1

PRIORITY

Some applications of queues require items processed

in order of "key" or priority rather than in order of

entry (FIFO)

Priority Queues (PQueues or PQs) provide this via:

 Insert item with a given priority into PQ

 Remove item with highest priority key

 Highest priority key may be one with smallest or largest

value depending on the application

Plus generic ADT operations:

new, drop, empty, …

PRIORITY QUEUE INTERFACE

typedef struct priQ * PriQ;

//We assume we have a more complex Item type that has

//a key and a value, where the key is the priority and the

//value is the data being stored

// Core operations

PriQ initPriQ(void);

void insert(PriQ q, Item i);

//retrieve and delete Item with highest priority

Item delete(PriQ q);

// Useful operations

int sizePriQ(PriQ q);

void changePriority(PriQ q, Key k, Item i);

void deleteKey(PriQ q, Key k);

int maxSize(PriQ q);

COMPARISON OF POSSIBLE IMPLEMENTATIONS

Implementation insert delete

ordered array/list O(N) O(1)

unordered array/list O(1) O(N)

Can we implement BOTH operations efficiently?

 Yes with a heap

 O(log N) for insert and delete

HEAP ORDER PROPERTY

 Heaps can be viewed as trees with top-to-bottom

heap ordering

 for all keys both subtrees are ≤ root

property applies to all nodes in tree (i.e. root contains

largest value in that subtree)

COMPLETE TREE PROPERTY

Heaps are "complete trees“

 every level is filled in before adding a node to the next

level

 the nodes in a given level are filled in from left to right,

with no breaks.

HEAP IMPLEMENTATIONS

BSTs are typically implemented as linked data

structures

Heaps CAN be implemented as linked data structures

 Heaps are TYPICALLY implemented via arrays.

 The property of being complete makes array

implementations suitable

ARRAY BASED HEAP IMPLEMENTATION

 Simple index calculations allow navigation through

the tree:

 left child of node at index i is located at 2i

 right child of node at index i is located at 2i+1

 parent of node at index i is located at i/2

HEAP INSERTION

 Insertion is a two-step process

1. add new element at bottom-most, rightmost position

2. reorganise values along path to root to restore heap

property

HEAP INSERTION FIX-UP CODE

// force value at a[k] into correct position

void fixUp(Item a[], int k) {

while (k > 1 && less(a[k/2],a[k])) {

swap(a, k, k/2);

k = k/2; // integer division

}

}

HEAP INSERTION

DELETION WITH HEAPS

 Deletion is a three-step process

1. replace root value by bottom-most, rightmost value

2. remove bottom-most, rightmost value

3. reorganise values along path from root to restore heap

HEAP DELETION FIX-DOWN CODE

void fixDown(Item a[], int k) {

int done = 0;

while (2*k <= N && !done) {

int j = 2*k; //choose larger of two children

if (j < N && less(a[j], a[j+1])){

j++;

}

if (!less(a[k], a[j])){

done =1;

}else{

swap(a, k, j);

k = j;

}

}

}

EXERCISE:

 Show the construction of the max heap produced by

inserting

 H E A P S F U N

 Show the heap after an item is deleted.

 Show the heap after another item is deleted.

