Divide and Conquer Sorting Algorithms and Non-comparison-based Sorting Algorithms

COMP1927 16x1
Sedgewick Chapters 7 and 8
Sedgewick Chapter 6.10, Chapter 10

Divide and Conquer Sorting algorithms

- Step 1
- If a collection has less than two elements, it's already sorted
- Otherwise, split it into two parts
- Step 2
- Sort both parts separately
- Step 3
- Combine the sorted collections to return the final result

Merge Sort

- Basic idea: Divide and Conquer
- split the array into two equal-sized partitions
- (recursively) sort each of the partitions
- merge the two sorted partitions together
- Merging: Basic idea
- copy elements from the inputs one at a time
- give preference to the smaller of the two
- when one exhausted, copy the rest of the other

Divide and Conquer Sorting: Mergesort

- Split the sequence in halves
- Sort both halves independently
- What is the best way to combine them?
- look at the first element in each sequence, pick the smallest of both, insert in sorted collection, continue until all elements are used up

(1) split
(2)call sort rec.
(3)merge

Merge sort: Array implementation

- assuming we have merge implemented, mergesort can be defined as:

```
void merge (int a[], int l, int m, int r);
void mergesort (Item a[], int l, int r){
    int m = (l+r)/2;
    if (r <= l) {
        return;
    }
    mergesort (a, l, m);
    mergesort (a, m+1, r);
    merge (a, l, m, r);
}
```


Merge Array Implementation

```
void merge(int a[], int l, int mid, int r) {
    int i, j, k, nitems = r-l+1;
    int *tmp = malloc(nitems*sizeof(int));
    i = l; j = mid+1; k = 0;
    while (i <= mid && j <= r) {
        if (a[i] < a[j] ) {
        tmp[k++] = a[i++];
        }else{
        tmp[k++] = a[j++];
        }
    }
    while (i <= mid) tmp[k++] = a[i++];
    while (j <= r) tmp[k++] = a[j++];
    //copy back
    for (i = l, k = 0; i <= r; i++, k++)
        a[i] = tmp[k];
    free(tmp);
}
```


Mergesort: Work Complexity

- How many steps?
- Constant time (on arrays, for example) to split array into two halves
- N steps to combine (merge)
- $T(N)=N+2^{*} T(N / 2)$
- Substitute $N=2^{N}$
- $T\left(2^{N}\right)=2^{N}+2 T\left(2^{N} / 2\right)$
- $\quad=2^{N}+2 T\left(2^{N-1}\right)$
- $T\left(2^{N}\right) / 2^{N}=1+T\left(2^{N-1}\right) /\left(2^{N-1}\right)$

$$
=1+\left(1+T\left(2^{N-2}\right) /\left(2^{N-2}\right)\right)=1+1+\left(1+T\left(2^{N-3}\right) / 2^{N-3}\right) \text { etc }=N
$$

- $T\left(2^{N}\right)=2^{N} N$
- $T(N)=N_{l o g}^{2} N$

Merge Sort Work Complexity

- How many steps does it take to sort a collection of N elements?
- split array into equal-sized partitions
- same happens at every recursive level
- each "level" requires $\leq N$ comparisons
- In worst case exactly interleaved and is N
- halving at each level $\Rightarrow \log _{2} N$ levels
o Overall:
- Merge sort is in O(nlogn),
- Stable - as long as merge implemented to be stable
- Not in-place: Uses $O(n)$ memory for merge and $O(l o g n)$ stack space
- Non-adaptive : still nlogn for ordered data

Bottom Up Merge Sort

- Basic Idea: Non-recursive
- On each pass, array contains sorted sections of length m
- At start treat as n sorted sections of length 1
- 1st pass merges adjacent elements into sections of length 2
- 2nd pass merges adjacent elements into sections of length 4
- continue until a single sorted section of length n
- This approach is used for sorting diskfiles

Bottom-Up Merge sort Array IMPLEMENTATION

```
#define min(A,B) (A<B ? A : B)
int merge (int a[], int l, int m, int r);
void mergesortBU (int a[], int l, int r){
    int i, m, end;
    for (m = 1; m <= r-l; m = 2*m) {
        for (i = l; i <= r-m; i += 2*m) {
            end = min(i + 2*m - 1, r));
            merge (a, i, i+m-1, end);
        }
    }
}
```


Merge sort: Implementation

- Straight forward to implement on lists
- Traverses its input in sequential order
- Do not need extra space for merging lists
- Works for top-down and bottom up versions

Divide and Conquer Sorting: Quicksort

- Mergesort uses a trivial split operation and puts all the work in combining the result
- Can we split the collection in a more intelligent way, such that combining the results is trivial?
- make sure all elements in one part are less than all the elements in the second part

More on Quick sort: Implementation

On arrays, we need in-place partitioning:

- we need to swap elements in the array, such that for some pivot we choose, and some index i, all
oj<i, a[j] $\leq a[i], ~ a n d$
ok>i, $a[k] \geq a[i]$

QUICK SORT

- Given such a partition function, the implementation of quick sort on arrays is easy:
- However, it's surprisingly tricky to get partition right for all cases

```
int partition(int a[], int l, int r);
void quicksort (int a[], int l, int r){
    int i;
    if (r <= l) {
            return;
    }
    i = partition (a, l, r);
    quicksort (a, l, i-1);
    quicksort (a, i+1, r);
}
```


QUICK SORT: PARTITIONING

```
int partition (int a[], int l, int r) {
    int i = l-1;
    int j = r;
    int pivot = a[r]; //rightmost is pivot
    for (;;) {
        while ( a[++i] < pivot) ;
        while ( pivot < a[--j] && j != l);
        if (i >= j) {
        break;
        }
        swap(i,j,a);
    }
    //put pivot into place
    swap(i,r a);
    return i; //Index of the pivot
}
```


Quicksort: Work Complexity

- How many steps?
- N steps to split array in two
- Combing the sorted sub-results in constant time
- Best case (both parts have the same size):

$$
\text { - } T(N)=N+2^{*} T(N / 2) \quad \mathrm{O}\left(N^{*} \log N\right)
$$

- Worst case (one part contains all elements):
- $T(N)=N+T(N-1)$
- $\quad=N+N-1+T(N-2)$
- $\quad=N+N-1+N-2+\ldots+1=N(N+1) / 2$
- $\quad=O\left(N^{2}\right)$

QuICK-SORT PROPERTIES

- It is not adaptive: existing order in the sequence only makes it worse
- It is not stable in our implementation. Can be made stable.
- In-place: Partitioning done in place
- Recursive calls use stack space of
- $\mathrm{O}(\mathrm{N})$ in worst case
- $\mathrm{O}(\log \mathrm{N})$ on average

QuIck sort - PERFORMANCE PROBLEMS

- Taking the first or last element as pivot is often a bad choice
- sequence might be partially sorted already
- Already ordered data is a worst case scenario
- Reverse ordered data is a worst case scenario
- split into parts of size $N-1$ and o
- Ideally our pivot would be
- The median value
- In the worst case our pivot is
- the largest or smallest value

QuIck sort choosing better a pivot

- We can reduce the probability of picking a bad pivot
- picking a random element as the pivot
- picking the best out of three (or more)
- Median of Three partitioning
- Compare left-most, middle and right-most element
- Pick the median of these 3 values to be the pivot
- Does not eliminate the worst case but makes it less likely
- Ordered data no longer a worst case scenario

Quick sort Median of Three Partitioning- choosing a better pivot

(1) pick $a[1], a[r], a[(r+1) / 2]$
(2) swap a[r-1] and $a[(r+1) / 2]$
(3) sort $a[1], a[r-1], a[r]$ such that $a[l]<=a[r-1]<=a[r]$
(4) call partition on $a[1+1]$ to $a[r-1]$

QUICK SORT: PERFORMANCE AND

 OPTIMISATION- Optimised versions of quick sort are frequently used
- For small sequences, quick sort is relatively expensive because of the recursive calls
- Quick sort with subfile cutoff
- Handle small partitions less than a certain threshold length differently
-Switch to insertion sort for the small partitions
-Don't sort. Leave and do insertion sort at the end
- Handling duplicates more efficiently by using three way partitioning.

QuIcksort On Linked Lists

- Straight forward to do if we just use first or last element as the pivot
- Picking the pivot via randomisation or median of 3 is now $\mathrm{O}(\mathrm{n})$ instead of $\mathrm{O}(1)$.

Quick Sort vs Merge Sort

- On typical modern architectures, efficient quicksort implementations generally outperform mergesort for sorting RAM-based arrays.
- Quick Sort is also a cache friendly sorting algorithm as it has good locality of reference when used for arrays.
- On the other hand, merge sort is a stable sort, parallelizes better, and is more efficient at handling slow-to-access sequential media. Merge sort is often the best choice for sorting a linked list and the merging can be done without using extra space that is used during merge for arrays.

HOW FAST CAN A SORT BECOME?

- All the sorts we have seen so far have been comparison based sorts
- find order by comparing elements in the sequence
- can sort any type of data as long as there is a way to compare 2 items
- Theoretical lower bound on worst case running time of comparison based sorts
- O(nlog(n)).
- Algorithms such as quicksort and mergesort are really about as fast as we can go for unknown types of data.

SORTING HAS A THEORETICAL NLOGN LOWER BOUND

- If there is 3 items, then $3!=6$ possible permutations or 6 possible different inputs
- If there are n items, then n ! possible permutations or inputs
- If we do 1 comparison we can divide into 2 different categories
- If we do k comparisons we can divide into 2^{k} different categories
- We need to do enough comparisons so
- $n!<=2^{K}$
- $\log \mathrm{n}!<=\log 2^{k}$
- $\log n!<=k$
$\circ \mathrm{n} \log \mathrm{n}<=\mathrm{k} \quad$ (using stirling's approximation)

Non-COMPARISON Based Sorting

- Non-comparison based sorting
- We may not actually have to compare pairs of elements to sort the data.
- Specialised sorts can be implemented if additional information about the data to be sorted is known.
- Take advantage of special properties of keys
- We can do some kinds of sorts in linear time!

Key Indexed Counting Sort

- Basic Idea:
- Using an array, count up number of times each key appears
- Use this information as an index of where the item belongs in the final sorted array
- Place items in the final sorted array based on their index
- For example: Sorting numbers from $0 . .10$
- If I knew there were three 0's and two 1's
- If I had a 2, it would go at index 5
- If I got another 2, it would go at index 6 .

Key indexed counting sort

- May work in O(n) time. How?
- Because it uses no comparisons!
- But we have to make assumptions about the size and nature of the data
- Assumptions
- Sequence of size N
- Each key is in the range of $0-\mathrm{M}-1$
- Time Complexity
- Efficient if M is not too large compared to N
- O($n+M$) - Not good in cases like : 1,2,999999
- In-place? No. Uses temporary arrays of $\mathrm{O}(\mathrm{n}+\mathrm{M})$
- Is stable

Radix Sorting

- Comparison based sorting:
- Sorting based on comparing two whole keys
- Radix sorting:
- Processing keys one piece at a time
- Keys are treated as numbers represented in base-R (radix) number system
- Binary numbers R is 2
- Decimal numbers R is 10
- Ascii strings R is 128 or 256
- Unicode strings R is 65,536
- Sorting is done individually on each digit in the key on at a time - digit by digit or character by character

Radix Sort LSD (LEASt SIGNIFICANT DIGIT FIRST)

- Consider characters or digits or bits from Right to Left (ie from least significant)
- Stably sort using dth digit as the key
- Can use Key Indexed Counting sort.
- For example: sorting 1019, 2301, 3129, 2122

1019, 2301, 3129, 2122 -> 2301, 2122, 1019, 3129
2301, 2122, 1019, 3129 -> 2301, 1019, 2122, 3129
2301, 1019, 2122, 3129 -> 1019, 2122, 3129, 2301
1019, 2122, 3129, 2301 -> 1019, 2122, 2301,3129

RADIX SORT LSD PROPERTIES

- $\mathrm{O}(\mathrm{w}(\mathrm{n}+\mathrm{R}))$
- w is the width of the data ie 987 is 3 digits wide, "aaa" is 3 characters, integers (binary rep) could have w as 32 and R of 2
- The algorithm makes w passes over all n keys.
- Not in place: extra space: O(n + R)
- Stable
- Can modify to use for variable length data
- Imagine sorting strings like
- "zaaaaaaa" and "aaaaaaaa"
- Can spend lots of work comparing insignificant details

Radix sort MSD (Most Significant Digit

 FIRST)- Partition file into R pieces according to first character
- Can use key-indexed counting
- Recursively sort all strings that start with each character
- key-indexed counts delineate files to sort
- O(w(n+R)) - in worst case
- Extra space $\mathrm{N}+\mathrm{DR}$ (D is depth of recursion)
- Don't have to go through all of the digits to get a sorted array. This can make MSD radix sort considerably faster
- Can use insertion sort for small subfiles

