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DIVIDE AND CONQUER SORTING ALGORITHMS

• Step 1

‣ If a collection has less than two elements, it’s already 

sorted

‣ Otherwise, split it into two parts

• Step 2

‣ Sort both parts separately

• Step 3

‣ Combine the sorted collections to return the final result



MERGE SORT

 Basic idea: Divide and Conquer

 split the array into two equal-sized partitions

 (recursively) sort each of the partitions

 merge the two sorted partitions together

 Merging: Basic idea

 copy elements from the inputs one at a time

 give preference to the smaller of the two

 when one exhausted, copy the rest of the other



DIVIDE AND CONQUER SORTING: 

MERGESORT

 Split the sequence in halves

 Sort both halves independently

 What is the best way to combine them?

 look at the first element in each sequence, pick the smallest of both, 
insert in sorted collection, continue until all elements are used up

5 6 1 7 3 2 8 4

5 6 1 7 3 2 8 4

(1) split

1 5 6 7 2 3 4 8

(2)call sort rec.

1 2 3 4 5 6 7 8
(3)merge



MERGE SORT: ARRAY IMPLEMENTATION

 assuming we have merge implemented, mergesort can be 

defined as:

void merge (int a[], int l, int m, int r);

void mergesort (Item a[], int l, int r){   

int m = (l+r)/2;  

if  (r <= l) {    

return;  

}  

mergesort (a, l, m);   

mergesort (a, m+1, r);

merge (a, l, m, r);

}



MERGE ARRAY IMPLEMENTATION

void merge(int a[], int l, int mid, int r) {

int i, j, k, nitems = r-l+1; 

int *tmp = malloc(nitems*sizeof(int)); 

i = l; j = mid+1; k = 0; 

while (i <= mid && j <= r) { 

if ( a[i] < a[j] ) {

tmp[k++] = a[i++]; 

}else{ 

tmp[k++] = a[j++]; 

}

}

while (i <= mid) tmp[k++] = a[i++]; 

while (j <= r) tmp[k++] = a[j++]; 

//copy back 

for (i = l, k = 0; i <= r; i++, k++) 

a[i] = tmp[k]; 

free(tmp); 

}  



MERGESORT: WORK COMPLEXITY

 How many steps?

 Constant time (on arrays, for example) to split array into two halves

 N steps to combine (merge)

 T(N) =  N + 2* T(N/2) 

 Substitute N = 2N

 T(2N) = 2N + 2T(2N/2) 

 = 2N + 2T(2N-1)

 T(2N)/2N = 1 + T(2N-1)/(2N-1)

 = 1 + (1 + T(2N-2)/(2N-2)) = 1 + 1 + (1+ T(2N-3)/2N-3) etc = N

 T(2N)  = 2NN

 T(N) = Nlog2N              



MERGE SORT WORK COMPLEXITY

 How many steps does it take to sort a collection of 

N elements?

 split array into equal-sized partitions 

 same happens at every recursive level 

 each "level" requires ≤ N comparisons 

 In worst case exactly interleaved and is N

 halving at each level ⇒ log2N levels

 Overall:

 Merge sort is in O(nlogn),

 Stable – as long as merge implemented to be stable

 Not in-place: Uses O(n) memory for merge and O(logn) 

stack space

 Non-adaptive : still nlogn for ordered data



BOTTOM UP MERGE SORT

 Basic Idea: Non-recursive

 On each pass, array contains sorted sections of length m

 At start treat as n sorted sections of length 1

 1st pass merges adjacent elements into sections of length 2

 2nd pass merges adjacent elements into sections of length 4

 continue until a single sorted section of length n

 This approach is used for sorting diskfiles



BOTTOM-UP MERGE SORT ARRAY

IMPLEMENTATION

#define min(A,B) (A<B ? A : B)

int merge (int a[], int l, int m, int r);

void mergesortBU (int a[], int l, int r){   

int i, m, end;

for (m = 1; m <= r-l; m = 2*m) {

for (i = l; i <= r-m; i += 2*m) {

end = min(i + 2*m – 1, r));

merge (a, i, i+m-1, end);

}

}

}



MERGE SORT: IMPLEMENTATION

 Straight forward to implement on lists 

 Traverses its input in sequential order

 Do not need extra space for merging lists

 Works for top-down and bottom up versions



DIVIDE AND CONQUER SORTING: QUICKSORT

 Mergesort uses a trivial split operation and puts all the work in 
combining the result

 Can we split the collection in a more intelligent way, such that 
combining the results is trivial?

 make sure all elements in one part are less than all the elements in 
the second part

5 6 1 7 3 2 8 4

1 3 2 4 6 7 8

(1) split

1 2 3 4 6 7 8

(2) call sort rec.

1 2 3 4 5 6 7 8
(3)combine



MORE ON QUICK SORT: IMPLEMENTATION

On arrays, we need in-place partitioning: 

 we need to swap elements in the array, such that for some 
pivot we choose, and some index i, all

 j<i, a[j] ≤ a[i], and

k>i, a[k] ≥ a[i]

l ri

≤ a[i] ≥ a[i]



QUICK SORT

 Given such a partition function, the implementation of quick 
sort on arrays is easy:

 However, it’s surprisingly tricky to get partition right for all 
cases

int partition(int a[], int l, int r);

void quicksort (int a[], int l, int r){         

int i;  

if  (r <= l) {

return;

} 

i = partition (a, l, r);  

quicksort (a, l, i-1);  

quicksort (a, i+1, r);

}



QUICK SORT: PARTITIONING
int partition (int a[], int l, int r) {   

int i = l-1;

int j = r;   

int pivot = a[r]; //rightmost is pivot  

for (;;) {   

while ( a[++i] < pivot) ;    

while ( pivot <  a[--j] && j != l);

if (i >= j) { 

break;

}    

swap(i,j,a);  

}

//put pivot into place  

swap(i,r a);  

return i; //Index of the pivot

}



QUICKSORT: WORK COMPLEXITY

 How many steps?

 N steps to split array in two

 Combing the sorted sub-results in constant time 

 Best case (both parts have the same size):

 T(N) = N + 2* T(N/2) 

 Worst case (one part contains all elements):

 T(N) = N + T(N-1)  

 = N + N-1 + T(N-2)

 = N + N-1 + N-2 + ... + 1 = N(N+1)/2

 = O(N2) 

O(N * log N)



QUICK-SORT PROPERTIES

 It is not adaptive: existing order in the sequence 

only makes it worse

 It is not stable in our implementation. Can be made 

stable.

 In-place: Partitioning done in place

 Recursive calls use stack space of 

O(N) in worst case

O(log N) on average



QUICK SORT - PERFORMANCE PROBLEMS

 Taking the first or last element as pivot is often a 

bad choice

 sequence might be partially sorted already

 Already ordered data is a worst case scenario

 Reverse ordered data is a worst case scenario

 split into parts of size N-1 and 0

 Ideally our pivot would be

The median value

 In the worst case our pivot  is

 the largest or smallest value



QUICK SORT CHOOSING BETTER A PIVOT

 We can  reduce the probability of picking a bad 

pivot

 picking a random element as the pivot

 picking the best out of three (or more)

Median of Three partitioning

Compare left-most, middle and right-most 

element

Pick the median of these 3 values to be the pivot

Does not eliminate the worst case but makes it 

less likely

Ordered data no longer a worst case scenario



QUICK SORT MEDIAN OF THREE

PARTITIONING- CHOOSING A BETTER PIVOT

(1) pick a[l],a[r], a[(r+l)/2]

(2) swap a[r-1] and a[(r+l)/2]

(3) sort a[l], a[r-1],a[r] such that a[l]<=a[r-1] <= a[r]

(4) call partition on a[l+1] to a[r-1]

l r(l+r)/2 r-1



QUICK SORT: PERFORMANCE AND

OPTIMISATION

 Optimised versions of quick sort are frequently used 

 For small sequences, quick sort is relatively 

expensive because of the recursive calls

 Quick sort with subfile cutoff

 Handle small partitions less than a certain 

threshold length differently

Switch to insertion sort for the small partitions

Don’t sort. Leave and do insertion sort at the 

end

 Handling duplicates more efficiently by using three 

way partitioning.



QUICKSORT ON LINKED LISTS

 Straight forward to do if we just use first or last 

element as the pivot

 Picking the pivot via randomisation or median of 3 is 

now O(n) instead of O(1).



QUICK SORT VS MERGE SORT

 On typical modern architectures, efficient quicksort

implementations generally outperform mergesort for 

sorting RAM-based arrays.

 Quick Sort is also a cache friendly sorting algorithm as 

it has good locality of reference when used for arrays.

 On the other hand, merge sort is a stable sort, 

parallelizes better, and is more efficient at handling 

slow-to-access sequential media. Merge sort is 

often the best choice for sorting a linked list and the 

merging can be done without using extra space that 

is used during merge for arrays.

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Linked_list


HOW FAST CAN A SORT BECOME?

 All the sorts we have seen so far have been 
comparison based sorts

 find order by comparing elements in the sequence

 can sort any type of data as long as there is a way to 
compare 2 items

 Theoretical lower bound on worst case running time of 
comparison based sorts

 O(nlog(n)). 

 Algorithms such as quicksort and mergesort are really 
about as fast as we can go for unknown types of data.



SORTING HAS A THEORETICAL NLOGN LOWER

BOUND

 If there is 3 items, then 3! = 6 possible permutations 

or 6 possible different inputs

 If there are n items, then n! possible permutations or 

inputs 

 If we do 1 comparison we can divide into 2 different 

categories 

 If we do k comparisons we can divide into 2k different 

categories 

 We need to do enough comparisons so

 n! <= 2K

 log n! <= log 2k 

 log n! <= k

 n log n <= k    (using stirling’s approximation) 



NON-COMPARISON BASED SORTING

 Non-comparison based sorting

 We may not actually have to compare pairs of elements to 
sort the data.  

 Specialised sorts can be implemented if additional 
information about the data to be sorted is known.

 Take advantage of special properties of keys

 We can do some kinds of sorts in linear time!



KEY INDEXED COUNTING SORT

 Basic Idea:

 Using an array, count up number of times each key 

appears

 Use this information as an index of where the item belongs 

in the final sorted array

 Place items in the final sorted array based on their index

 For example: Sorting numbers from 0..10

 If I knew there were three 0’s and two 1’s

 If I had a 2, it would go at index 5

 If I got another 2, it would go at index 6. 



KEY INDEXED COUNTING SORT

 May work in O(n) time. How?

 Because it uses no comparisons! 

 But we have to make assumptions about the size and 

nature of the data

 Assumptions

 Sequence of size N

 Each key is in the range of 0 - M-1

 Time Complexity
 Efficient if M is not too large compared to N

 O(n + M) - Not good in cases like : 1,2,999999

 In-place? No. Uses temporary arrays of O(n+M)

 Is stable



RADIX SORTING

 Comparison based sorting:

 Sorting based on comparing two whole keys

 Radix sorting:

 Processing keys one piece at a time

 Keys are treated as numbers represented in base-R 

(radix) number system

 Binary numbers R is 2

 Decimal numbers R is 10

 Ascii strings R is 128 or 256

 Unicode strings R is 65,536

 Sorting is done individually on each digit in the key 

on at a time – digit by digit or character by character



RADIX SORT LSD (LEAST SIGNIFICANT DIGIT

FIRST)

 Consider characters or digits or bits from Right to 

Left (ie from least significant)

 Stably sort using dth digit as the key 

 Can use Key Indexed Counting sort. 

 For example: sorting 1019, 2301, 3129, 2122

1019, 2301, 3129, 2122 -> 2301, 2122, 1019, 3129

2301, 2122, 1019, 3129 -> 2301, 1019, 2122, 3129 

2301, 1019, 2122, 3129 -> 1019, 2122, 3129, 2301 

1019, 2122, 3129, 2301 -> 1019, 2122, 2301,3129



RADIX SORT LSD PROPERTIES 

 O(w(n+R)) 

 w is the width of the data ie 987 is 3 digits wide, “aaa” is 

3 characters, integers (binary rep) could have w as 32 

and R of 2 

 The algorithm makes w passes over all n keys. 

 Not in place: extra space: O(n + R) 

 Stable 

 Can modify to use for variable length data 

 Imagine sorting strings like 

 “zaaaaaaa” and “aaaaaaaa” 

 Can spend lots of work comparing insignificant 

details 



RADIX SORT MSD (MOST SIGNIFICANT DIGIT

FIRST)

 Partition file into R pieces according to first 

character 

 Can use key-indexed counting 

 Recursively sort all strings that start with each 

character 

 key-indexed counts delineate files to sort 

 O(w(n+R)) – in worst case 

 Extra space N + DR (D is depth of recursion) 

 Don't have to go through all of the digits to get a 

sorted array. This can make MSD radix sort 

considerably faster 

 Can use insertion sort for small subfiles


