
Graphs
Computing 2 COMP1927 16x1

Sedgewick Part 5: Chapter 17

WHAT ARE GRAPHS

 Many applications require a collection of items (i.e.

a set)

 relationships/connections between items

 Examples: maps: items are cities, connections are

roads

 web: items are pages, connections are hyperlinks

 Collection types we've seen so far

 Lists…linear sequence of items

 trees ... branched hierarchy of items

 These are both special cases of graphs.

 Graphs are more general ... allow arbitrary

connections.

DEFINITION OF A GRAPH

 A graph G = (V,E)

 V is a set of vertices

 E is a set of edges (subset of V×V)

 Example:

OTHER GRAPH APPLICATION EXAMPLES

Graph Vertices Edges

Communication Telephones,

Computers

cables

Games Board positions Legal moves

Social networks People Friendships

Scheduling Tasks Precedence

Constraints

Circuits Gates,Registers,

Processors

Wires

Transport Intersections/

airports

Roads,flights

A REAL EXAMPLE:

AUSTRALIAN ROAD DISTANCES

Dist Adel Bris Can Dar Melb Perth Syd

Adel - 2055 1390 3051 732 2716 1605

Bris 2055 - 1291 3429 1671 4771 982

Can 1390 1291 - 4441 658 4106 309

Dar 3051 3429 4441 - 3783 4049 4411

Melb 732 1671 658 3783 - 3448 873

Perth 2716 4771 4106 4049 3448 - 3972

Syd 1605 982 309 4411 873 3972 -

A REAL GRAPH EXAMPLE

 Alternative representation of Australian roads:

GRAPHS

 Questions we might ask about a graph

 is there a way to get from item A to item B?

 what’s the best way?

 which items are connected?

 Graph algorithms are in general significantly more

difficult than list or tree processing

 no implicit order of the items

 graphs can contain cycles

 concrete representation is less obvious

 complexity of algorithms depend connection complexity

SIMPLE GRAPHS

At this point, we will only consider simple graphs which

are characterised by:

 a set of vertices, and

 a set of undirected edges that connect pairs of vertices

 no self loops

 no parallel edges

Depending on the application, graphs can have different properties:

undirected directed multigraph weighted

SIMPLE GRAPH: VERTICES AND EDGES

 In our example graph:

 V (number of vertices): 7

 From 0 to 6

 A 7-vertex graph

 E (number of edges): 11

 How many edges can a 7-vertex

simple graph have?

 7*(7-1)/2 = 21

0 1

2 3

5

4

6

SIMPLE GRAPH: VERTICES AND EDGES

 E <= V*(V-1)/2

 If E is closer to V2 the graph is dense

 If E is closer to V the graph is sparse

 If E is 0 we have a set

 These properties may affect

 choice of data structures to represent

the graph and

 the algorithms used

0 1

2 3

5

4

6

GRAPHS: TERMINOLOGY

 The degree of a vertex is the number of edges from

the vertex

 A complete graph is a graph where every vertex is

connected to all the other vertices

 E = V(V-1)/2

 The degree of every vertex is

 V-1

GRAPH TERMINOLOGY

 adjacent: two vertices, v and w are adjacent if there is

an edge, e, between them

 e is incident on both v and w
0 1

2 3

56

GRAPH TERMINOLOGY

0 1

2 3

5

4

6

subgraph: a subset of vertices

with their associated edges

GRAPH TERMINOLOGY: PATHS

a path: a sequence of vertices where

each one is connected to its predecessor

1,0,6,5

a graph is a tree if there is exactly one

path between each pair of vertices

a path is simple if it doesn’t have any

repeating vertices

a path is a cycle if it is simple apart from

its first and last vertex

0 1

2 3

5

4

6

GRAPH TERMINOLOGY

 A graph is a connected graph, if there is a path from

every vertex to every other vertex in the graph

GRAPH TERMINOLOGY

 A graph that is not connected consists of a set of

connected components, which are maximally

connected subgraphs

GRAPH TERMINOLOGY

 A spanning tree of a graph is a subgraph that

contains all the vertices and is a single tree

GRAPH TERMINOLOGY

 A spanning forest of a graph is a subgraph that

contains all its vertices and is a set of trees

CLIQUES

 Clique: complete subgraph

 Clique containing vertices{A, G, H, J, K, M}

 Another clique containing vertics {D,E,F,L}

2
0

…GRAPH TERMINOLOGY

 Hamilton path

 A simple path that

connects two vertices

that visits every

vertex in the graph

exactly once

 If the path is from a

vertex back to itself it

is called a hamilton

tour

EXERCISE:

DOES THIS HAVE A HAMILTON PATH?

2
2

…GRAPH TERMINOLOGY

 Euler path

 A path the connects

two given vertices

using each edge in

the path exactly once.

 If the path is from a

vertex back to itself it

is an euler tour

B

A C

E D

2
3

EXERCISE:

DOES THIS HAVE AN EULER PATH?

 A graph has an Euler

tour if and only if it is

connected and all

vertices are of even

degree

 A graph has an Euler

path if and only if it is

connected and exactly 2

vertices are of odd

degree

A B

D C

DIRECTED GRAPHS

 If the edges in a graph are directed, the graph is

called a directed graph or digraph

 a digraph with V vertices can have at most V2 edges

 Can have self loops

 edge(u,v) != edge(v,u)

 a digraph is a tree if there is one vertex which is

connected to all other vertices, and there is at most one

path between any two vertices

 Unless specified, we assume graphs are

undirected in this course.

UNDIRECTED VS DIRECTED GRAPHS

OTHER TYPES OF GRAPHS

 Weighted graph

 each edge has an associated value (weight)

 e.g. road map (weights on edges are distances
between cities)

 Multi-graph

 allow multiple edges between two vertices

 e.g. function call graph (f() calls g() in several
places)

 eg. Transport – may be able to get to new location
by bus or train or ferry etc…

DEFINING GRAPHS

 need some way of identifying vertices and their

connections

 Below are 4 representations of the same graph

GRAPH ADT

 Data:

 set of edges,

 set of vertices

 Operations:

 building: create graph, create edge, add edge

 deleting: remove edge, drop whole graph

 scanning: get edges, copy, show

 Notes: In our graphs

 set of vertices is fixed when graph initialised

 we treat vertices as ints, but could be Items

ADT INTERFACE FOR GRAPHS

 Vertices and Edges

typedef int Vertex;

// edge representation

typedef struct edge {

Vertex v;

Vertex w;

} Edge;

// edge construction

Edge mkEdge (Vertex v, Vertex w);

ADT INTERFACE OR GRAPHS

 Graph basics:

// graph handle

typedef struct GraphRep *Graph;

// create a new graph

Graph graphInit (int noOfVertices);

int validV(Graph g,Vertex v); //validity check

• Graph inspection and manipulation:

void insertEdge (Graph g, Edge e);

void removeEdge(Graph g, Edge e);

Edge * edges (Graph g, int * nE);

int isAdjacent(Graph g, Vertex v, Vertex w);

int numV(Graph g);

int numE(Graph g);

• Whole graph operations:

Graph GRAPHcopy (Graph g);

void GRAPHdestroy (Graph g);

ADJACENCY MATRIX REPRESENTATION

 Edges represented by a VxV matrix

ADJACENCY MATRIX REPRESENTATION

 Advantages

 easily implemented in C as 2-dimensional array

 can represent graphs, digraphs and weighted graphs

graphs: symmetric boolean matrix

digraphs: non-symmetric boolean matrix

weighted: non-symmetric matrix of weight values

 Disadvantages:

 if few edges ⇒ sparse, memory-inefficient

ADJACENCY MATRIX IMPLEMENTATION

typedef struct GraphRep {

int nV; // #vertices

int nE; // #edges

int **edges; // matrix of booleans

} GraphRep;

ADJACENCY MATRIX STORAGE OPTIMISATION

 Storage cost:

 V int ptrs + V2 ints If the graph is sparse, most storage

is wasted.

 A storage optimisation:

 If undirected, store only top-right part of matrix.

 New storage cost: V-1 int ptrs + V(V+1)/2 ints (but still

O(V2))

 Requires us to always use edges (v,w) such that v < w.

COST OF OPERATIONS ON ADJACENCY MATRIX

 Cost of operations:

 initialisation: O(V2) (initialise V×V matrix)

 insert edge: O(1) (set two cells in matrix)

 delete edge: O(1) (unset two cells in matrix)

 See code for the implementation of these functions

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge * edges (Graph g, int * nE);

ADJACENCY LIST REPRESENTATION

 For each vertex, store linked list of adjacent

vertices:

ADJACENCY LIST REPRESENTATION

 Advantages

 relatively easy to implement in C

 can represent graphs and digraphs

 memory efficient if E/V relatively small

 Disavantages:

 one graph has many possible representations

(unless lists are ordered by same criterion e.g.

ascending)

ADJACENCY MATRIX IMPLEMENTATION

typedef struct vNode *VList;

struct vNode { Vertex v; VList next; };

typedef struct GraphRep {

int nV; // #vertices

int nE; // #edges

VList *edges; // array of lists

} GraphRep;

COSTS OF OPERATIONS ON ADJACENCY LISTS

 Cost of operations:

 initialisation: O(V) (initialise V lists)

 insert edge: O(1) (insert one vertex into list)

 delete edge: O(V) (need to find vertex in list)

 If vertex lists are sorted insert requires search of list

⇒ O(V)

 If we do not want to allow parallel edges it is O(V)

 delete always requires a search, regardless of list

order

COSTS OF OPERATIONS ON ADJACENCY

LISTS

 See code for the implementation of these functions

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge * edges (Graph g, int * nE);

COMPARISON OF DIFFERENT GRAPH

REPRESENTATIONS

adjacency matrix adjacency list

space V2 V + E

initialise empty V2 V

copy V2 E

destroy V E

insert edge 1 V

find/remove edge 1 V

is v isolated? V 1

isAdjacent 1 V

