Graphs

Computing 2 COMP1927 16x1 Sedgewick Part 5: Chapter 17

WHAT ARE GRAPHS

- Many applications require a collection of items (i.e. a set)
 - relationships/connections between items
 - Examples: maps: items are cities, connections are roads
 - web: items are pages, connections are hyperlinks
- Collection types we've seen so far
 - Lists...linear sequence of items
 - trees ... branched hierarchy of items
 - These are both special cases of graphs.
- Graphs are more general ... allow arbitrary connections.

DEFINITION OF A GRAPH

- A graph G = (V, E)
 - *V* is a set of vertices
 - *E* is a set of edges (subset of *V*×*V*)

• Example:

$$V = \{v1, v2, v3, v4\}$$

$$E = \{e1, e2, e3, e4, e5\}$$

OTHER GRAPH APPLICATION EXAMPLES

Graph	Vertices	Edges
Communication	Telephones, Computers	cables
Games	Board positions	Legal moves
Social networks	People	Friendships
Scheduling	Tasks	Precedence Constraints
Circuits	Gates,Registers, Processors	Wires
Transport	Intersections/ airports	Roads,flights

A REAL EXAMPLE: AUSTRALIAN ROAD DISTANCES

Dist	Adel	Bris	Can	Dar	Melb	Perth	Syd
Adel	-	2055	1390	3051	732	2716	1605
Bris	2055	-	1291	3429	1671	4771	982
Can	1390	1291	-	4441	658	4106	309
Dar	3051	3429	4441	-	3783	4049	4411
Melb	732	1671	658	3783	-	3448	873
Perth	2716	4771	4106	4049	3448	-	3972
Syd	1605	982	309	4411	873	3972	-

A REAL GRAPH EXAMPLE

• Alternative representation of Australian roads:

GRAPHS

- o Questions we might ask about a graph
 - is there a way to get from item A to item B?
 - what's the best way?
 - which items are connected?
- Graph algorithms are in general significantly more difficult than list or tree processing
 - no implicit order of the items
 - graphs can contain cycles
 - concrete representation is less obvious
 - complexity of algorithms depend connection complexity

SIMPLE GRAPHS

Depending on the application, graphs can have different properties:

At this point, we will only consider **simple graphs** which are characterised by:

- a set of vertices, and
- a set of undirected edges that connect pairs of vertices
 - no self loops
 - o no parallel edges

SIMPLE GRAPH: VERTICES AND EDGES

• In our example graph:

- V (number of vertices): 7
 - *From o* to 6
 - A 7-vertex graph
- E (number of edges): 11
- How many edges can a 7-vertex simple graph have?

•
$$7^{*}(7-1)/2 = 21$$

SIMPLE GRAPH: VERTICES AND EDGES

- *E* <= *V**(*V*-1)/2
 - If E is closer to V² the graph is dense
 - If E is closer to V the graph is sparse
 - If E is 0 we have a set
- o These properties may affect
 - choice of data structures to represent the graph and
 - the algorithms used

- The degree of a vertex is the number of edges from the vertex
- A complete graph is a graph where every vertex is connected to all the other vertices
 - E = V(V-1)/2
 - The degree of every vertex is
 - o V-1

 adjacent: two vertices, v and w are adjacent if there is an edge, e, between them

o e is incident on both v and w

subgraph: a subset of vertices with their associated edges

GRAPH TERMINOLOGY: PATHS

a path: a sequence of vertices where each one is connected to its predecessor 1,0,6,5

a graph is a tree if there is exactly one path between each pair of vertices

a path is simple if it doesn't have any repeating vertices

a path is a cycle if it is simple apart from its first and last vertex

• A graph is a connected graph, if there is a path from every vertex to every other vertex in the graph

 A graph that is not connected consists of a set of connected components, which are maximally connected subgraphs

• A spanning tree of a graph is a subgraph that contains all the vertices and is a single tree

• A spanning forest of a graph is a subgraph that contains all its vertices and is a set of trees

CLIQUES

- Clique: complete subgraph
 - Clique containing vertices{A, G, H, J, K, M}
 - Another clique containing vertics {D,E,F,L}

... GRAPH TERMINOLOGY

Hamilton path

- A simple path that connects two vertices that visits every
 vertex in the graph exactly once
- If the path is from a vertex back to itself it is called a hamilton tour

EXERCISE: DOES THIS HAVE A HAMILTON PATH?

... GRAPH TERMINOLOGY

Euler path

- A path the connects two given vertices using each edge in the path exactly once.
- If the path is from a vertex back to itself it is an euler tour

EXERCISE: DOES THIS HAVE AN EULER PATH?

- A graph has an Euler tour if and only if it is connected and all vertices are of even degree
- A graph has an Euler path if and only if it is connected and exactly 2 vertices are of odd degree

DIRECTED GRAPHS

• If the edges in a graph are directed, the graph is called a directed graph or digraph

- a digraph with V vertices can have at most V^2 edges
 - Can have self loops
 - o edge(u,v) != edge(v,u)
- a digraph is a tree if there is one vertex which is connected to all other vertices, and there is at most one path between any two vertices
- Unless specified, we assume graphs are undirected in this course.

UNDIRECTED VS DIRECTED GRAPHS

OTHER TYPES OF GRAPHS

- Weighted graph
 - each edge has an associated value (weight)
 - e.g. road map (weights on edges are distances between cities)
- o Multi-graph
 - allow multiple edges between two vertices
 - e.g. function call graph (f() calls g() in several places)
 - eg. Transport may be able to get to new location by bus or train or ferry etc...

DEFINING GRAPHS

- need some way of identifying vertices and their connections
- Below are 4 representations of the same graph

GRAPH ADT

o Data:

- set of edges,
- set of vertices
- Operations:
 - building: create graph, create edge, add edge
 - deleting: remove edge, drop whole graph
 - scanning: get edges, copy, show
- Notes: In our graphs
 - set of vertices is fixed when graph initialised
 - we treat vertices as ints, but could be Items

ADT INTERFACE FOR GRAPHS

o Vertices and Edges

```
typedef int Vertex;
```

```
// edge representation
typedef struct edge {
    Vertex v;
    Vertex w;
} Edge;
```

// edge construction
Edge mkEdge (Vertex v, Vertex w);

ADT INTERFACE OR GRAPHS

o Graph basics:

// graph handle
typedef struct GraphRep *Graph;

// create a new graph
Graph graphInit (int noOfVertices);
int validV(Graph g,Vertex v); //validity check

• Graph inspection and manipulation:

```
void insertEdge (Graph g, Edge e);
void removeEdge(Graph g, Edge e);
Edge * edges (Graph g, int * nE);
int isAdjacent(Graph g, Vertex v, Vertex w);
int numV(Graph g);
int numE(Graph g);
```

• Whole graph operations:

Graph GRAPHcopy (Graph g); void GRAPHdestroy (Graph g);

ADJACENCY MATRIX REPRESENTATION

• Edges represented by a VxV matrix

Undirected graph

A	0	1	2	3
0	0	1	0	1
1	1	0	0	1
2	0	0	0	1
3	1	1	1	0

Directed graph

A	0	1	2	3
0	0	0	0	1
1	1	0	0	1
2	0	0	0	0
3	0	0	1	0

ADJACENCY MATRIX REPRESENTATION

Advantages

- easily implemented in C as 2-dimensional array
- can represent graphs, digraphs and weighted graphs
 o graphs: symmetric boolean matrix
 - o digraphs: non-symmetric boolean matrix
 - o weighted: non-symmetric matrix of weight values

• Disadvantages:

• if few edges \Rightarrow sparse, memory-inefficient

ADJACENCY MATRIX IMPLEMENTATION

typedef struct GraphRep {

- int nV; // #vertices
- int nE; // #edges
- int **edges; // matrix of booleans

} GraphRep;

Undirected graph

ADJACENCY MATRIX STORAGE OPTIMISATION

• Storage cost:

- V int ptrs + V² ints If the graph is sparse, most storage is wasted.
- A storage optimisation:
 - If undirected, store only top-right part of matrix.
 - New storage cost: V-1 int ptrs + V(V+1)/2 ints (but still O(V²))
 - Requires us to always use edges (v, w) such that v < w.

COST OF OPERATIONS ON ADJACENCY MATRIX

• Cost of operations:

- initialisation: $O(V^2)$ (initialise $V \times V$ matrix)
- insert edge: O(1) (set two cells in matrix)
- delete edge: O(1) (unset two cells in matrix)
- See code for the implementation of these functions and their cost
 - int isAdjacent(Graph g, Vertex v, Vertex w);
 - Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

Exercise : write the functions and find the cost for

Edge * edges (Graph g, int * nE);

ADJACENCY LIST REPRESENTATION

For each vertex, store linked list of adjacent vertices:

A[0] = <1, 3> A[1] = <0, 3> A[2] = <3> A[3] = <0, 1, 2>

Undirected graph

Directed graph

ADJACENCY LIST REPRESENTATION

Advantages

- relatively easy to implement in C
- can represent graphs and digraphs
- memory efficient if E/V relatively small
- Disavantages:
 - one graph has many possible representations (unless lists are ordered by same criterion e.g. ascending)

ADJACENCY MATRIX IMPLEMENTATION

- int nE; // #edges
- VList *edges; // array of lists

} GraphRep;

COSTS OF OPERATIONS ON ADJACENCY LISTS

• Cost of operations:

- initialisation: O(V) (initialise V lists)
- insert edge: O(1) (insert one vertex into list)
- delete edge: O(V) (need to find vertex in list)
- If vertex lists are sorted insert requires search of list $\Rightarrow O(V)$
- If we do not want to allow parallel edges it is O(V)
- delete always requires a search, regardless of list order

COSTS OF OPERATIONS ON ADJACENCY LISTS

- See code for the implementation of these functions and their cost
 - int isAdjacent(Graph g, Vertex v, Vertex w);
 - Vertex * adjacentVertices(Graph g, Vertex v, int * nV);
- Exercise : write the functions and find the cost for
 - Edge * edges (Graph g, int * nE);

COMPARISON OF DIFFERENT GRAPH REPRESENTATIONS

	adjacency matrix	adjacency list
space	V ²	V + E
initialise empty	V ²	V
сору	V ²	E
destroy	V	E
insert edge	1	V
find/remove edge	1	V
is v isolated?	V	1
isAdjacent	1	V