Graphs

Computing 2 COMP1927 16x1
Sedgewick Part 5: Chapter 17
WHAT ARE GRAPHS

- Many applications require a collection of items (i.e. a set)
 - relationships/connections between items
 - Examples: maps: items are cities, connections are roads
 - web: items are pages, connections are hyperlinks
- Collection types we've seen so far
 - Lists…linear sequence of items
 - trees ... branched hierarchy of items
 - These are both special cases of graphs.
- Graphs are more general ... allow arbitrary connections.
DEFINITION OF A GRAPH

- A graph $G = (V, E)$
 - V is a set of vertices
 - E is a set of edges (subset of $V \times V$)

Example:

![Graph Diagram]

$V = \{v1, v2, v3, v4\}$

$E = \{e1, e2, e3, e4, e5\}$
Other Graph Application Examples

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Telephones, Computers</td>
<td>cables</td>
</tr>
<tr>
<td>Games</td>
<td>Board positions</td>
<td>Legal moves</td>
</tr>
<tr>
<td>Social networks</td>
<td>People</td>
<td>Friendships</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Tasks</td>
<td>Precedence Constraints</td>
</tr>
<tr>
<td>Circuits</td>
<td>Gates, Registers, Processors</td>
<td>Wires</td>
</tr>
<tr>
<td>Transport</td>
<td>Intersections/ airports</td>
<td>Roads, flights</td>
</tr>
</tbody>
</table>
A REAL EXAMPLE:
AUSTRALIAN ROAD DISTANCES

<table>
<thead>
<tr>
<th>Dist</th>
<th>Adel</th>
<th>Bris</th>
<th>Can</th>
<th>Dar</th>
<th>Melb</th>
<th>Perth</th>
<th>Syd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adel</td>
<td>-</td>
<td>2055</td>
<td>1390</td>
<td>3051</td>
<td>732</td>
<td>2716</td>
<td>1605</td>
</tr>
<tr>
<td>Bris</td>
<td>2055</td>
<td>-</td>
<td>1291</td>
<td>3429</td>
<td>1671</td>
<td>4771</td>
<td>982</td>
</tr>
<tr>
<td>Can</td>
<td>1390</td>
<td>1291</td>
<td>-</td>
<td>4441</td>
<td>658</td>
<td>4106</td>
<td>309</td>
</tr>
<tr>
<td>Dar</td>
<td>3051</td>
<td>3429</td>
<td>4441</td>
<td>-</td>
<td>3783</td>
<td>4049</td>
<td>4411</td>
</tr>
<tr>
<td>Melb</td>
<td>732</td>
<td>1671</td>
<td>658</td>
<td>3783</td>
<td>-</td>
<td>3448</td>
<td>873</td>
</tr>
<tr>
<td>Perth</td>
<td>2716</td>
<td>4771</td>
<td>4106</td>
<td>4049</td>
<td>3448</td>
<td>-</td>
<td>3972</td>
</tr>
<tr>
<td>Syd</td>
<td>1605</td>
<td>982</td>
<td>309</td>
<td>4411</td>
<td>873</td>
<td>3972</td>
<td>-</td>
</tr>
</tbody>
</table>
A real graph example:

- Alternative representation of Australian roads:
Graphs

- Questions we might ask about a graph
 - is there a way to get from item A to item B?
 - what’s the best way?
 - which items are connected?
- **Graph algorithms** are in general significantly more difficult than list or tree processing
 - no implicit order of the items
 - graphs can contain cycles
 - concrete representation is less obvious
 - complexity of algorithms depend connection complexity
SIMPLE GRAPHS

Depending on the application, graphs can have different properties:

- undirected
- directed
- multigraph
- weighted

At this point, we will only consider **simple graphs** which are characterised by:

- a set of vertices, and
- a set of undirected edges that connect pairs of vertices
 - no self loops
 - no parallel edges
Simple Graph: Vertices and Edges

In our example graph:
- \(V \) (number of vertices): 7
 - *From 0 to 6*
 - A 7-vertex graph
- \(E \) (number of edges): 11

How many edges can a 7-vertex simple graph have?
- \(7 \times (7-1)/2 = 21 \)
SIMPLE GRAPH: VERTICES AND EDGES

- $E \leq V^*(V-1)/2$
 - If E is closer to V^2 the graph is dense
 - If E is closer to V the graph is sparse
 - If E is 0 we have a set

- These properties may affect
 - choice of data structures to represent the graph and
 - the algorithms used
Graphs: Terminology

- The **degree** of a vertex is the number of edges from the vertex.
- A **complete graph** is a graph where every vertex is connected to all the other vertices.
 - \(E = \frac{V(V-1)}{2} \)
 - The degree of every vertex is \(V-1 \)
Graph Terminology

- **adjacent**: two vertices, v and w are adjacent if there is an edge, e, between them.
- e is **incident** on both v and w.
Graph Terminology

subgraph: a subset of vertices with their associated edges
GRAPH TERMINOLOGY: PATHS

a path: a sequence of vertices where each one is connected to its predecessor 1,0,6,5

a graph is a tree if there is exactly one path between each pair of vertices

a path is simple if it doesn’t have any repeating vertices

a path is a cycle if it is simple apart from its first and last vertex
GRAPH TERMINOLOGY

- A graph is a **connected graph**, if there is a path from every vertex to every other vertex in the graph.
A graph that is not connected consists of a set of connected components, which are maximally connected subgraphs.
GRAPH TERMINOLOGY

- A spanning tree of a graph is a subgraph that contains all the vertices and is a single tree
A spanning forest of a graph is a subgraph that contains all its vertices and is a set of trees.
CLIQUES

- Clique: complete subgraph
 - Clique containing vertices {A, G, H, J, K, M}
 - Another clique containing vertices {D, E, F, L}
Graph Terminology

- Hamilton path
 - A simple path that connects two vertices that visits every vertex in the graph exactly once.
 - If the path is from a vertex back to itself it is called a Hamilton tour.
EXERCISE:
Does this have a Hamilton path?
Graph Terminology

- **Euler path**
 - A path that connects two given vertices using each edge in the path exactly once.
 - If the path is from a vertex back to itself it is an Euler tour.
EXERCISE: DOES THIS HAVE AN EULER PATH?

- A graph has an Euler tour if and only if it is connected and all vertices are of even degree.
- A graph has an Euler path if and only if it is connected and exactly 2 vertices are of odd degree.
Directed Graphs

- If the edges in a graph are directed, the graph is called a **directed graph or digraph**
 - A digraph with V vertices can have at most V^2 edges
 - Can have self loops
 - $\text{edge}(u,v) \neq \text{edge}(v,u)$
 - A digraph is a tree if there is one vertex which is connected to all other vertices, and there is at most one path between any two vertices

- Unless specified, we assume graphs are undirected in this course.
UNDIRECTED VS DIRECTED GRAPHS

Undirected graph

Directed graph
Other Types of Graphs

- **Weighted graph**
 - each edge has an associated value (weight)
 - e.g. road map (weights on edges are distances between cities)

- **Multi-graph**
 - allow multiple edges between two vertices
 - e.g. function call graph (f() calls g() in several places)
 - eg. Transport – may be able to get to new location by bus or train or ferry etc…
DEFINING GRAPHS

- need some way of identifying vertices and their connections
- Below are 4 representations of the **same** graph
Graph ADT

- **Data:**
 - set of edges,
 - set of vertices

- **Operations:**
 - building: create graph, create edge, add edge
 - deleting: remove edge, drop whole graph
 - scanning: get edges, copy, show

- **Notes:** In our graphs
 - set of vertices is fixed when graph initialised
 - we treat vertices as ints, but could be Items
ADT INTERFACE FOR GRAPHS

- Vertices and Edges

typedef int Vertex;

// edge representation
typedef struct edge {
 Vertex v;
 Vertex w;
} Edge;

// edge construction
Edge mkEdge (Vertex v, Vertex w);
ADT Interface or Graphs

- **Graph basics:**
  ```c
  // graph handle
typedef struct GraphRep *Graph;

  // create a new graph
  Graph graphInit (int noOfVertices);
  int validV(Graph g, Vertex v); // validity check
  ```

- **Graph inspection and manipulation:**
  ```c
  void insertEdge (Graph g, Edge e);
  void removeEdge(Graph g, Edge e);
  Edge * edges (Graph g, int * nE);
  int isAdjacent(Graph g, Vertex v, Vertex w);
  int numV(Graph g);
  int numE(Graph g);
  ```

- **Whole graph operations:**
  ```c
  Graph GRAPHcopy (Graph g);
  void GRAPHdestroy (Graph g);
  ```
Adjacency matrix representation

- Edges represented by a VxV matrix

Undirected graph

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Directed graph

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
ADJACENCY MATRIX REPRESENTATION

Advantages
- easily implemented in C as 2-dimensional array
- can represent graphs, digraphs and weighted graphs
 - graphs: symmetric boolean matrix
 - digraphs: non-symmetric boolean matrix
 - weighted: non-symmetric matrix of weight values

Disadvantages:
- if few edges ⇒ sparse, memory-inefficient
Adjacency Matrix Implementation

typedef struct GraphRep {
 int nV; // #vertices
 int nE; // #edges
 int **edges; // matrix of booleans
} GraphRep;

Undirected graph
Adjacency Matrix Storage Optimisation

- **Storage cost:**
 - $V \text{ int ptrs} + V^2 \text{ ints}$ If the graph is sparse, most storage is wasted.

- **A storage optimisation:**
 - If undirected, store only top-right part of matrix.
 - New storage cost: $V-1 \text{ int ptrs} + V(V+1)/2 \text{ ints}$ (but still $O(V^2)$)
 - Requires us to always use edges (v,w) such that $v < w$.

Undirected graph

```
1
\|\|\|\|\|
0 1 2 3
```

GraphRep

```
<table>
<thead>
<tr>
<th></th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>edges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nV</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
1 0 1
0 1
1
```
Cost of operations on adjacency matrix

- Cost of operations:
 - initialisation: $O(V^2)$ (initialise $V \times V$ matrix)
 - insert edge: $O(1)$ (set two cells in matrix)
 - delete edge: $O(1)$ (unset two cells in matrix)

See code for the implementation of these functions and their cost
- int isAdjacent(Graph g, Vertex v, Vertex w);
- Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

Exercise: write the functions and find the cost for
- Edge * edges (Graph g, int * nE);
Adjacency List Representation

- For each vertex, store linked list of adjacent vertices:

 Undirected graph

 0 -> 1, 2, 3
 1 -> 0, 2
 2 -> 0, 1
 3 -> 1

 \[A[0] = <1, 3> \]
 \[A[1] = <0, 3> \]
 \[A[2] = <3> \]
 \[A[3] = <0, 1, 2> \]

 Directed graph

 0 -> 1
 1 -> 0, 2
 2 -> 0
 3 -> 0, 1

 \[A[0] = <3> \]
 \[A[1] = <0, 3> \]
 \[A[2] = <> \]
 \[A[3] = <2> \]
Adjacency List Representation

- **Advantages**
 - relatively easy to implement in C
 - can represent graphs and digraphs
 - memory efficient if E/V relatively small

- **Disadvantages:**
 - one graph has many possible representations (unless lists are ordered by same criterion e.g. ascending)
Adjacency Matrix Implementation

typedef struct vNode *VList;
struct vNode { Vertex v; VList next; };
typedef struct GraphRep {
 int nV; // #vertices
 int nE; // #edges
 VList *edges; // array of lists
} GraphRep;

Undirected graph
Costs of Operations on Adjacency Lists

- Cost of operations:
 - initialisation: $O(V)$ (initialise V lists)
 - insert edge: $O(1)$ (insert one vertex into list)
 - delete edge: $O(V)$ (need to find vertex in list)

- If vertex lists are sorted insert requires search of list
 $\Rightarrow O(V)$

- If we do not want to allow parallel edges it is $O(V)$

- delete always requires a search, regardless of list order
COSTS OF OPERATIONS ON ADJACENCY LISTS

- See code for the implementation of these functions and their cost
 - int isAdjacent(Graph g, Vertex v, Vertex w);
 - Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

- Exercise: write the functions and find the cost for
 - Edge * edges (Graph g, int * nE);
Comparison of Different Graph Representations

<table>
<thead>
<tr>
<th></th>
<th>Adjacency Matrix</th>
<th>Adjacency List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>V^2</td>
<td>$V + E$</td>
</tr>
<tr>
<td>Initialise empty</td>
<td>V^2</td>
<td>V</td>
</tr>
<tr>
<td>Copy</td>
<td>V^2</td>
<td>E</td>
</tr>
<tr>
<td>Destroy</td>
<td>V</td>
<td>E</td>
</tr>
<tr>
<td>Insert edge</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Find/Remove edge</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Is v isolated?</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>Is adjacent</td>
<td>1</td>
<td>V</td>
</tr>
</tbody>
</table>