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WHAT ARE GRAPHS

 Many applications require a collection of items (i.e. 

a set) 

 relationships/connections between items 

 Examples: maps: items are cities, connections are 

roads 

 web: items are pages, connections are hyperlinks

 Collection types we've seen so far

 Lists…linear sequence of items 

 trees ... branched hierarchy of items

 These are both special cases of graphs.

 Graphs are more general ... allow arbitrary 

connections. 



DEFINITION OF A GRAPH

 A graph G = (V,E)

 V is a set of vertices 

 E is a set of edges (subset of V×V) 

 Example: 



OTHER GRAPH APPLICATION EXAMPLES

Graph Vertices Edges

Communication Telephones, 

Computers

cables

Games Board positions Legal moves

Social networks People Friendships

Scheduling Tasks Precedence

Constraints

Circuits Gates,Registers,

Processors

Wires

Transport Intersections/

airports

Roads,flights



A REAL EXAMPLE: 

AUSTRALIAN ROAD DISTANCES

Dist Adel Bris Can Dar Melb Perth Syd

Adel - 2055 1390 3051 732 2716 1605

Bris 2055 - 1291 3429 1671 4771 982

Can 1390 1291 - 4441 658 4106 309

Dar 3051 3429 4441 - 3783 4049 4411

Melb 732 1671 658 3783 - 3448 873

Perth 2716 4771 4106 4049 3448 - 3972

Syd 1605 982 309 4411 873 3972 -



A REAL GRAPH EXAMPLE

 Alternative representation of Australian roads:



GRAPHS

 Questions we might ask about a graph

 is there a way to get from item A to item B?

 what’s the best way?

 which items are connected?

 Graph algorithms are in general significantly more 

difficult than list or tree processing

 no implicit order of the items 

 graphs can contain cycles

 concrete representation is less obvious

 complexity of algorithms depend connection complexity



SIMPLE GRAPHS

At this point, we will only consider simple graphs which 

are characterised  by:

 a set of vertices, and

 a set of undirected edges that connect pairs of vertices

 no self loops

 no parallel edges

Depending on the application, graphs can have different properties:

undirected directed multigraph weighted



SIMPLE GRAPH: VERTICES AND EDGES

 In our example graph:

 V (number of vertices): 7

 From  0 to 6

 A 7-vertex graph

 E (number of edges): 11

 How many edges can a 7-vertex 

simple graph have?

 7*(7-1)/2 = 21
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SIMPLE GRAPH: VERTICES AND EDGES

 E <= V*(V-1)/2

 If E is closer to V2 the graph is dense

 If E is closer to V the graph is sparse

 If E is 0 we have a set

 These properties may affect

 choice of data structures to represent 

the graph and 

 the algorithms used
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GRAPHS: TERMINOLOGY

 The degree of a vertex is the number of edges from 

the vertex

 A complete graph is a graph where every vertex is 

connected to all the other vertices 

 E = V(V-1)/2

 The degree of every vertex is

 V-1



GRAPH TERMINOLOGY

 adjacent: two vertices, v and w are adjacent if there is 

an edge, e, between them

 e is incident on  both v and w
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GRAPH TERMINOLOGY
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subgraph: a subset of vertices

with their associated edges



GRAPH TERMINOLOGY: PATHS

a path: a sequence of vertices where 

each one is connected to its predecessor

1,0,6,5

a graph is a tree if there is exactly one 

path between each pair of vertices

a path is simple if it doesn’t have any 

repeating vertices

a path is a cycle if it is simple apart from 

its first and last vertex
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GRAPH TERMINOLOGY

 A graph is a connected graph, if there is a path from 

every vertex to every other vertex in the graph



GRAPH TERMINOLOGY

 A graph that is not connected consists of a set of 

connected components, which are maximally 

connected subgraphs



GRAPH TERMINOLOGY

 A spanning tree of a graph is a subgraph that 

contains all the vertices and is a single tree



GRAPH TERMINOLOGY

 A spanning forest of a graph is a subgraph that 

contains all its vertices and is a set of trees



CLIQUES

 Clique: complete subgraph

 Clique containing  vertices{A, G, H, J, K, M}

 Another clique containing vertics {D,E,F,L}
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…GRAPH TERMINOLOGY

 Hamilton path

 A simple path that 

connects two vertices 

that visits every 

vertex in the graph 

exactly once

 If the path is from a 

vertex back to itself it 

is called a hamilton 

tour



EXERCISE: 

DOES THIS HAVE A HAMILTON PATH?
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…GRAPH TERMINOLOGY

 Euler path

 A path the connects 

two given vertices 

using each edge in 

the path exactly once.

 If the path is from a 

vertex back to itself it 

is an euler tour

B

A C

E D
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EXERCISE: 

DOES THIS HAVE AN EULER PATH?

 A graph has an Euler 

tour if and only if it is 

connected and all 

vertices are of even 

degree

 A graph has an Euler 

path if and only if it is 

connected and exactly 2 

vertices are of odd 

degree
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DIRECTED GRAPHS

 If the edges in a graph are directed, the graph is 

called a directed graph or digraph

 a digraph with V vertices can have at most V2 edges

 Can have self loops

 edge(u,v) != edge(v,u)

 a digraph is a tree if there is one vertex which is 

connected to all other vertices, and there is at most one 

path  between any two vertices

 Unless specified, we assume graphs are 

undirected in this course.



UNDIRECTED VS DIRECTED GRAPHS



OTHER TYPES OF GRAPHS

 Weighted graph 

 each edge has an associated value (weight) 

 e.g. road map (weights on edges are distances 
between cities) 

 Multi-graph 

 allow multiple edges between two vertices 

 e.g. function call graph (f() calls g() in several 
places) 

 eg. Transport – may be able to get to new location 
by bus or train or ferry etc…



DEFINING GRAPHS

 need some way of identifying vertices and their 

connections

 Below are 4 representations of the same graph



GRAPH ADT

 Data: 

 set of edges, 

 set of vertices 

 Operations: 

 building: create graph, create edge, add edge 

 deleting: remove edge, drop whole graph 

 scanning: get edges, copy, show 

 Notes: In our graphs 

 set of vertices is fixed when graph initialised 

 we treat vertices as ints, but could be Items 



ADT INTERFACE FOR GRAPHS

 Vertices and Edges

typedef int Vertex;

// edge representation

typedef struct edge {

Vertex v;

Vertex w;

} Edge;  

// edge construction

Edge mkEdge (Vertex v, Vertex w); 



ADT INTERFACE OR GRAPHS

 Graph basics:

// graph handle

typedef struct GraphRep *Graph;

// create a new graph

Graph  graphInit (int noOfVertices);

int validV(Graph g,Vertex v); //validity check

• Graph inspection and manipulation:

void  insertEdge (Graph g, Edge e);

void  removeEdge(Graph g, Edge e);

Edge *  edges (Graph g, int * nE);

int isAdjacent(Graph g, Vertex v, Vertex w);

int numV(Graph g);

int numE(Graph g);

• Whole graph operations:

Graph GRAPHcopy (Graph g);

void  GRAPHdestroy (Graph g);



ADJACENCY MATRIX REPRESENTATION

 Edges represented by a VxV matrix



ADJACENCY MATRIX REPRESENTATION

 Advantages 

 easily implemented in C as 2-dimensional array 

 can represent graphs, digraphs and weighted graphs 

graphs: symmetric boolean matrix 

digraphs: non-symmetric boolean matrix 

weighted: non-symmetric matrix of weight values 

 Disadvantages: 

 if few edges ⇒ sparse, memory-inefficient 



ADJACENCY MATRIX IMPLEMENTATION

typedef struct GraphRep { 

int nV;      // #vertices 

int nE;      // #edges 

int **edges; // matrix of booleans

} GraphRep;



ADJACENCY MATRIX STORAGE OPTIMISATION

 Storage cost: 

 V int ptrs + V2 ints If the graph is sparse, most storage 

is wasted. 

 A storage optimisation: 

 If undirected, store only top-right part of matrix.

 New storage cost: V-1 int ptrs + V(V+1)/2 ints (but still 

O(V2)) 

 Requires us to always use edges (v,w) such that v < w. 



COST OF OPERATIONS ON ADJACENCY MATRIX

 Cost of operations: 

 initialisation: O(V2) (initialise V×V matrix) 

 insert edge: O(1) (set two cells in matrix) 

 delete edge: O(1) (unset two cells in matrix) 

 See code for the implementation of these functions 

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge *  edges (Graph g, int * nE);



ADJACENCY LIST REPRESENTATION

 For each vertex, store linked list of adjacent 

vertices: 



ADJACENCY LIST REPRESENTATION

 Advantages 

 relatively easy to implement in C 

 can represent graphs and digraphs 

 memory efficient if E/V relatively small 

 Disavantages: 

 one graph has many possible representations 

(unless lists are ordered by same criterion e.g. 

ascending) 



ADJACENCY MATRIX IMPLEMENTATION

typedef struct vNode *VList; 

struct vNode { Vertex v; VList next; };

typedef struct GraphRep { 

int nV;       // #vertices 

int nE;       // #edges 

VList *edges; // array of lists

} GraphRep;



COSTS OF OPERATIONS ON ADJACENCY LISTS

 Cost of operations: 

 initialisation: O(V) (initialise V lists) 

 insert edge: O(1) (insert one vertex into list) 

 delete edge: O(V) (need to find vertex in list) 

 If vertex lists are sorted insert requires search of list 

⇒ O(V)

 If we do not want to allow parallel edges it is O(V)

 delete always requires a search, regardless of list 

order 



COSTS OF OPERATIONS ON ADJACENCY

LISTS

 See code for the implementation of these functions 

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge *  edges (Graph g, int * nE);



COMPARISON OF DIFFERENT GRAPH

REPRESENTATIONS

adjacency matrix adjacency list

space V2 V + E

initialise empty V2 V 

copy V2 E

destroy V E

insert edge 1 V

find/remove edge 1 V

is v isolated? V 1

isAdjacent 1 V


