Graphs

Computing 2 COMP1927 16x1 Sedgewick Part 5: Chapter 17

What are graphs

- Many applications require a collection of items (i.e. a set)
- relationships/connections between items
- Examples: maps: items are cities, connections are roads
- web: items are pages, connections are hyperlinks
- Collection types we've seen so far
- Lists...linear sequence of items
- trees ... branched hierarchy of items
- These are both special cases of graphs.
- Graphs are more general ... allow arbitrary connections.

Definition of a graph

- A graph $G=(V, E)$
- V is a set of vertices
- E is a set of edges (subset of $V \times V$)
- Example:

$$
\begin{aligned}
& V=\{v 1, v 2, v 3, v 4\} \\
& E=\{e 1, e 2, e 3, e 4, e 5\}
\end{aligned}
$$

Other Graph Application examples

Graph	Vertices	Edges
Communication	Telephones, Computers	cables
Games	Board positions	Legal moves
Social networks	People	Friendships
Scheduling	Tasks	Precedence Constraints
Circuits	Gates,Registers, Processors	Wires
Transport	Intersections/ airports	Roads,flights

A REAL EXAMPLE: Australian road distances

Dist	Adel	Bris	Can	Dar	Melb	Perth	Syd
Adel	-	2055	1390	3051	732	2716	1605
Bris	2055	-	1291	3429	1671	4771	982
Can	1390	1291	-	4441	658	4106	309
Dar	3051	3429	4441	-	3783	4049	4411
Melb	732	1671	658	3783	-	3448	873
Perth	2716	4771	4106	4049	3448	-	3972
Syd	1605	982	309	4411	873	3972	-

A real graph Example

- Alternative representation of Australian roads:

GRAPHS

- Questions we might ask about a graph
- is there a way to get from item A to item B?
- what's the best way?
- which items are connected?
- Graph algorithms are in general significantly more difficult than list or tree processing
- no implicit order of the items
- graphs can contain cycles
- concrete representation is less obvious
- complexity of algorithms depend connection complexity

Simple Graphs

Depending on the application, graphs can have different properties:

undirected

directed

multigraph

weighted

At this point, we will only consider simple graphs which are characterised by:

- a set of vertices, and
- a set of undirected edges that connect pairs of vertices
- no self loops
- no parallel edges

Simple Graph: Vertices and Edges

- In our example graph:
- V (number of vertices): 7
- From o to 6
- A 7-vertex graph
- E (number of edges): 11
- How many edges can a 7 -vertex simple graph have?
- $7^{*}(7-1) / 2=21$

Simple Graph: Vertices and Edges

- $E<=V^{*}(V-1) / 2$
- If E is closer to V^{2} the graph is dense
- If E is closer to V the graph is sparse
- If E is 0 we have a set
- These properties may affect
- choice of data structures to represent the graph and

- the algorithms used

Graphs: Terminology

- The degree of a vertex is the number of edges from the vertex
- A complete graph is a graph where every vertex is connected to all the other vertices
- $\mathrm{E}=\mathrm{V}(\mathrm{V}-1) / 2$
- The degree of every vertex is
- V-1

Graph Terminology

- adjacent: two vertices, v and w are adjacent if there is an edge, e, between them
$\circ e$ is incident on both v and w

Graph Terminology

subgraph: a subset of vertices with their associated edges

Graph terminology: Paths

a path: a sequence of vertices where each one is connected to its predecessor 1,0,6,5
a graph is a tree if there is exactly one path between each pair of vertices

a path is simple if it doesn't have any repeating vertices
a path is a cycle if it is simple apart from its first and last vertex

Graph Terminology

- A graph is a connected graph, if there is a path from every vertex to every other vertex in the graph

Graph Terminology

- A graph that is not connected consists of a set of connected components, which are maximally connected subgraphs

Graph Terminology

- A spanning tree of a graph is a subgraph that contains all the vertices and is a single tree

Graph Terminology

- A spanning forest of a graph is a subgraph that contains all its vertices and is a set of trees

Cliques

- Clique: complete subgraph
- Clique containing vertices\{A, G, H, J, K, M\}
- Another clique containing vertics $\{D, E, F, L\}$

...GRAPH TERMINOLOGY
- Hamilton path
- A simple path that connects two vertices that visits every vertex in the graph exactly once
- If the path is from a vertex back to itself it is called a hamilton tour

EXERCISE: DOES THIS HAVE A HAMILTON PATH?

...GRAPH TERMINOLOGY

- Euler path
- A path the connects two given vertices using each edge in the path exactly once.
- If the path is from a vertex back to itself it is an euler tour

EXERCISE: DOES THIS HAVE AN EULER PATH?

- A graph has an Euler tour if and only if it is connected and all vertices are of even degree
- A graph has an Euler path if and only if it is connected and exactly 2 vertices are of odd degree

Directed Graphs

- If the edges in a graph are directed, the graph is called a directed graph or digraph
- a digraph with V vertices can have at most V^{2} edges
- Can have self loops
- edge(u,v) != edge(v,u)
- a digraph is a tree if there is one vertex which is connected to all other vertices, and there is at most one path between any two vertices
- Unless specified, we assume graphs are undirected in this course.

Undirected vs Directed Graphs

Undirected graph

Directed graph

Other types of Graphs

- Weighted graph
- each edge has an associated value (weight)
- e.g. road map (weights on edges are distances between cities)
- Multi-graph
- allow multiple edges between two vertices
- e.g. function call graph (f() calls $g()$ in several places)
- eg. Transport - may be able to get to new location by bus or train or ferry etc...

Defining GRaphs

- need some way of identifying vertices and their connections
- Below are 4 representations of the same graph

(c)
(d)

Graph ADT

- Data:
- set of edges,
- set of vertices
- Operations:
- building: create graph, create edge, add edge
- deleting: remove edge, drop whole graph
- scanning: get edges, copy, show
- Notes: In our graphs
- set of vertices is fixed when graph initialised
- we treat vertices as ints, but could be Items

ADT Interface For Graphs

- Vertices and Edges
typedef int Vertex;
// edge representation typedef struct edge \{

Vertex v; Vertex w;
\} Edge;
// edge construction
Edge mkEdge (Vertex v, Vertex w);

ADT Interface or Graphs

- Graph basics:

```
// graph handle
typedef struct GraphRep *Graph;
// create a new graph
Graph graphInit (int noOfVertices);
int validV(Graph g,Vertex v); //validity check
```

- Graph inspection and manipulation:

```
void insertEdge (Graph g, Edge e);
```

void removeEdge(Graph g, Edge e);
Edge * edges (Graph g, int * nE);
int isAdjacent(Graph g, Vertex v, Vertex w);
int numV(Graph g);
int numE(Graph g);

- Whole graph operations:

Graph GRAPHcopy (Graph g);
void GRAPHdestroy (Graph g);

AdJacency matrix Representation

- Edges represented by a VxV matrix

Undirected graph

Directed graph

A	0	1	2	3
0	0	1	0	1
1	1	0	0	1
2	0	0	0	1
3	1	1	1	0

A	0	1	2	3
0	0	0	0	1
1	1	0	0	1
2	0	0	0	0
3	0	0	1	0

Adjacency Matrix representation

- Advantages
- easily implemented in C as 2-dimensional array
- can represent graphs, digraphs and weighted graphs
- graphs: symmetric boolean matrix
o digraphs: non-symmetric boolean matrix
- weighted: non-symmetric matrix of weight values
- Disadvantages:
- if few edges \Rightarrow sparse, memory-inefficient

AdJacency Matrix Implementation

typedef struct GraphRep \{
int nV; // \#vertices
int nE; // \#edges
int **edges; // matrix of booleans
\} GraphRep;

Undirected graph

Adjacency Matrix Storage Optimisation

- Storage cost:
- V int ptrs $+V^{2}$ ints If the graph is sparse, most storage is wasted.
- A storage optimisation:
- If undirected, store only top-right part of matrix.
- New storage cost: $V-1$ int ptrs $+V(V+1) / 2$ ints (but still $\left.O\left(V^{2}\right)\right)$
- Requires us to always use edges (v, w) such that $v<w$.

Undirected graph

Cost of operations on adjacency matrix

- Cost of operations:
- initialisation: $O\left(V^{2}\right)$ (initialise $V \times V$ matrix)
- insert edge: $O(1)$ (set two cells in matrix)
- delete edge: $O(1)$ (unset two cells in matrix)
- See code for the implementation of these functions and their cost
- int isAdjacent(Graph g, Vertex v, Vertex w);
- Vertex * adjacentVertices(Graph g, Vertex v, int * nV);
- Exercise : write the functions and find the cost for
- Edge * edges (Graph g, int * nE);

Adjacency List Representation

- For each vertex, store linked list of adjacent vertices:

Undirected graph

Directed graph

$$
\mathrm{A}[0]=<1,3\rangle
$$

$$
\mathrm{A}[1]=<0,3>
$$

A[2] = <3>

$$
A[3]=<0,1,2>
$$

$\mathrm{A}[0]=<3>$
$\mathrm{A}[1]=\langle 0,3\rangle$
A[2] $=<>$
$\mathrm{A}[3]=<2>$

Adjacency List Representation

- Advantages
- relatively easy to implement in C
- can represent graphs and digraphs
- memory efficient if E / V relatively small
- Disavantages:
- one graph has many possible representations (unless lists are ordered by same criterion e.g. ascending)

AdJacency Matrix implementation

typedef struct vNode *VList;
struct vNode \{ Vertex v; VList next; \};
typedef struct GraphRep \{
int nV;
// \#vertices
int $n E$;
// \#edges
VList *edges; // array of lists
\} GraphRep;

Costs of Operations on Adjacency Lists

- Cost of operations:
- initialisation: $O(V)$ (initialise V lists)
- insert edge: $O(1)$ (insert one vertex into list)
- delete edge: $O(V)$ (need to find vertex in list)
- If vertex lists are sorted insert requires search of list $\Rightarrow O(V)$
- If we do not want to allow parallel edges it is $\mathrm{O}(\mathrm{V})$
- delete always requires a search, regardless of list order

Costs of Operations on Adjacency LISTS

- See code for the implementation of these functions and their cost
- int isAdjacent(Graph g, Vertex v, Vertex w);
- Vertex * adjacentVertices(Graph g, Vertex v, int * nV);
- Exercise : write the functions and find the cost for
- Edge * edges (Graph g, int * nE);

Comparison of different Graph REPRESENTATIONS

	adjacency matrix	adjacency list
space	V^{2}	$\mathrm{~V}+\mathrm{E}$
initialise empty	V^{2}	V
copy	V^{2}	E
destroy	V	E
insert edge	1	V
find/remove edge	1	V
is V isolated?	V	1
isAdjacent	1	V

