Directed Graphs

Computing 2 COMP1927 16x1

Directed Graphs

- In our previous discussion of graphs:
- an edge indicates a relationship between two vertices
- an edge indicates nothing more than a relationship
- In many real-world applications of graphs:
- edges are directional $(v \rightarrow w \neq w \rightarrow v)$
- For example a one way street
- Liking a fan page on facebook, following someone on twitter
- Directed graphs include
- edges that are directional
- Self -loops

Potential Digraph Application Areas

Domain	Vertex	Edge
Web	Web page	Hyperlink
Chess	Board Pos	Legal Move
Scheduling	Task	Precedence
Program	Function	Function Call
Science	Journal Article	Citation

Example of a Directed Graph

adjacency matrix

Terminology for Directed Graphs

- Out-degree (d(v))
- The number of directed edges leading out of the vertex
- In-degree ($\mathrm{d}^{-1}(\mathrm{v})$)
- The number of directed edges leading into a vertex
- Directed acyclic graph (DAG):
- graph containing no directed cycles

Terminology for Directed Graphs

- Reachability:
- w is reachable from v if there exists a directed path v,...,w
- Strongly Connected:
- Two vertices v and w are strongly connected if they are mutually reachable: there is a directed path from v to w and a directed path from w to v .
- Strong connectivity:
- every vertex is reachable from every other vertex
- Strongly connected components:
- A digraph that is not strongly connected consists of a set of strongly-connected components, which are maximal strongly-connected subgraphs.

Strong Connected Components

A digraph and its strong components

Problems To Solve on Digraphs

- is there a directed path from s to t ? (transitive closure)
- what is the shortest path from s to t ? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- how to build a web crawler? (graph traversal)
- which web pages are "important"? (PageRank)

Digraph Representation

- Similar set of choices as for non-directional graphs:
- V vertices identified by 0 .. $V-1$
- vertex-indexed adjacency matrix (non-symmetric)
- vertex-indexed adjacency lists
- What needs to be modified to turn our undirected graph implementations into directed graphs?

digraph

adj matrix

adj lists

Cost of Representations

	Storage	Add Edge	Edge Exist?	Get edges leaving v
Adj matrix	$\mathrm{V}+\mathrm{V}^{2}$	1	1	V
Adj list	$\mathrm{V}+\mathrm{E}$	$\mathrm{d}(\mathrm{v})$	$\mathrm{d}(\mathrm{v})$	$\mathrm{d}(\mathrm{v})$

- Where $d(v)$ is the degree (out degree) of vertex v.

Directed Graph Traversal

- Can use some of the same algorithms as for nondirected graphs
- depth-first searching (DFS)
- breadth-first searching (BFS)
- Example: Web Crawling
- visit every page on the web
- Solution:
- breadth-first search with "implicit" graph
- visit operation scans page and collects e.g. keywords and links
- Assumption:
- web is fully connected

Web Crawling Pseudo-Code

```
webCrawl(startingURL):
    mark startingURL as alreadySeen
    enqueue(Q, startingURL)
        while not empty(Q)
        nextPage = dequeue(Q)
        visit nextPage
    foreach (hyperLink in nextPage)
        if (hyperLink not alreadySeen)
        mark hyperLink as alreadySeen
        enqueue(Q, hyperLink)
```

visit scans page and collects e.g. keywords and links

