Directed Graphs

Computing 2 COMP1927 16x1

DIRECTED GRAPHS

• In our previous discussion of graphs:

- an edge indicates a relationship between two vertices
- an edge indicates nothing more than a relationship
- In many real-world applications of graphs:
 - edges are directional $(v \rightarrow w \neq w \rightarrow v)$
 - For example a one way street
 - Liking a fan page on facebook, following someone on twitter
- Directed graphs include
 - edges that are directional
 - Self -loops

POTENTIAL DIGRAPH APPLICATION AREAS

Domain	Vertex	Edge	
Web	Web page	Hyperlink	
Chess	Board Pos	Legal Move	
Scheduling	Task	Precedence	
Program	Program Function		
Science	Journal Article	Citation	

EXAMPLE OF A DIRECTED GRAPH

	а	b	С	d	е	f	g
а	1	0	0	1	0	0	0
b	1	0	1	0	0	0	0
С	0	1	0	1	0	0	1
d	0	1	0	0	0	1	1
е	0	0	0	1	0	0	0
f	1	0	0	1	0	0	1
g	0	0	0	0	0	0	1

adjacency matrix

TERMINOLOGY FOR DIRECTED GRAPHS

- o Out-degree (d(v))
 - The number of directed edges leading out of the vertex
- o In-degree (d⁻¹(v))
 - The number of directed edges leading into a vertex
- Directed acyclic graph (DAG):
 - graph containing no directed cycles

TERMINOLOGY FOR DIRECTED GRAPHS

• Reachability:

- w is reachable from v if there exists a directed path v,...,w
- Strongly Connected:
 - Two vertices v and w are strongly connected if they are mutually reachable: there is a directed path from v to w and a directed path from w to v.

• Strong connectivity:

- every vertex is reachable from every other vertex
- Strongly connected components:
 - A digraph that is not strongly connected consists of a set of strongly-connected components, which are maximal strongly-connected subgraphs.

STRONG CONNECTED COMPONENTS

A digraph and its strong components

PROBLEMS TO SOLVE ON DIGRAPHS

- is there a directed path from s to t? (transitive closure)
- what is the shortest path from s to t? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- how to build a web crawler? (graph traversal)
- which web pages are "important"? (PageRank)

DIGRAPH REPRESENTATION

• Similar set of choices as for non-directional graphs:

- V vertices identified by 0 ... V-1
- vertex-indexed adjacency matrix (non-symmetric)
- vertex-indexed adjacency lists
- What needs to be modified to turn our undirected graph implementations into directed graphs?

COST OF REPRESENTATIONS

	Storage	Add Edge	Edge Exist?	Get edges leaving v
Adj matrix	V + V ²	1	1	V
Adj list	V + E	d(v)	d(v)	d(v)

• Where d(v) is the degree (out degree) of vertex v.

DIRECTED GRAPH TRAVERSAL

- Can use some of the same algorithms as for nondirected graphs
 - depth-first searching (DFS)
 - breadth-first searching (BFS)
- o Example: Web Crawling
 - visit every page on the web
 - Solution:
 - breadth-first search with "implicit" graph
 - visit operation scans page and collects e.g. keywords and links
 - Assumption:
 - web is fully connected

Web Crawling Pseudo-Code

```
webCrawl(startingURL):
mark startingURL as alreadySeen
enqueue(Q, startingURL)
while not empty(Q)
nextPage = dequeue(Q)
visit nextPage
foreach (hyperLink in nextPage)
if (hyperLink not alreadySeen)
mark hyperLink as alreadySeen
enqueue(Q, hyperLink)
```

• visit scans page and collects e.g. keywords and links