Graph Search

Computing 2 COMP1927 16x1

Problems on Graphs

- What kinds of problems do we want to solve on/via graphs?
- Is there a simple path from A to B
- Is the graph fully-connected?
- Can we remove an edge and keep it fully connected?
- Which vertices are reachable from v? (transitive closure)
- What is the cheapest cost path from v to w?
- Is there a cycle that passes through all V? (tour)
- Is there a tree that links all vertices (spanning tree)
- What is the minimum spanning tree?
- Can a graph be drawn in a place with no crossing edges?
- Are two graphs "equivalent"? (isomorphism)

Graph Search

- We learn about properties of a graph by systematically examining each of its vertices and edges, for example
- to compute the degree of all vertices, we visit each vertex and count it's edges
- for path related properties, we have to move from vertex to vertex, along the graphs edges
- We implement a general graph search algorithms we can use to solve a wide range of graph problems

Simple Path Search

- Problem: is there a path from vertex v to vertex w ?
- Approach to solving problem:
- examine vertices adjacent to v
- if any of them is w, then we are done
- otherwise check if there is a path from any of the adjacent vertices
- repeat looking further and further from v
- Two different approaches to order of searching: breadth-first search (BFS), depth-first search (DFS)

BFS vs DFS PATH FINDING

- Is there a path from a to h ?

Breadth-first Search

Depth-first Search

DFS vs BFS Approaches

- DFS and BFS are closely related.
- Implementation differs only their use of a stack or a queue
- BFS implemented via a queue of to-be-visited vertices
- DFS implemented via a stack of to-be-visited vertices (or recursion)
- Both approaches ignore some edges and avoid cycles by remembering previously visited vertices.

Exercise: DFS and BFS Traversal

- Show the DFS order we visit to determine isPath (a,k)
- Show the BFS order we visit to determine isPath (a,k)
- Assume neighbours are chosen in alphabetical order

Depth First Search

- Basic approach to depth-first search:
- visit and mark current vertex
- for each neighbour, traverse it recursively
- Notes:
- need a mechanism for "marking" vertices
- in fact, we number them as we visit them (so that we could later trace path through graph)
- Make use of three global variables:
- count ... counter to remember how many vertices traversed so far
- pre[] ... array saying order in which each vertex was visited (pre stands for preorder)
- $s t[]$... array storing the predecessor of each vertex (st stands for spanning tree)

Depth First Search Tree

- The edges traversed in a graph walk form a tree
- It corresponds to the call tree of the recursive dfs function
- Represents the original graph minus any cycles or alternate paths
- We can use a tree to encode the whole search process
- Each time we visit a vertex we record the previous vertex we came from - if the graph is connected this forms a spanning tree
- We store this in the st array

Depth First Search (DFS)


```
// Assume we start with dummy Edge {0,0}
// assume we start with count = 0
// pre[v] = -1 for all v
// st[v] = -1 for all v (stores the predecessor)
// assume adjacency matrix representation
void dfsR (Graph g, Edge e) {
    Vertex i, w = e.w;
    pre[w] = count++;
    st[w] = e.v;
    for (i=0; i < g->V; i++){
        if ((g->edges[w][i] == 1) && (pre[i] == -1)
                        dfsR (g, mkEdge(g,w,i));
        }
    }
}
```


Depth First Search (DFS)

	0	1	2	3	4	5	6	7
pre	0	7	1	4	3	5	2	6
st	0	7	0	4	6	3	2	4

- the edges traversed in the graph walk form a tree

- the tree corresponds to the call tree of the depth first search - and to the contents of the st array - spanning tree
- pre contains the pre-ordering of the vertices

Properties of DFS Forests

- If a graph is not connected it will produce a spanning forest
- If it is connected it will form a spanning tree
- we call an edge connecting a vertex with an ancestor in the DFS tree that is not its parent a back edge

Exercise: DFS Traversal

- Which vertices will be visited during dfs(g):

- How can we ensure that all vertices are visited?

Graph Search function

- The graph may not be connected
- We need to make sure that we visit every connected component:

```
void dfSearch (Graph g)
    int v;
    count = 0;
    pre = malloc (sizeof (int) * g->nV));
    st = malloc(sizeof (int) * g->nV));
    for (v = 0; v < g->nV; v++) {
        pre[v] = -1;
        st[v] = -1;
    }
for (v = 0; v < g->V; v++) {
    if (pre[v] == -1)
            dfsR (g, mkEdge(g,v,v));
    }
}
```

- The work complexity of the graph search algorithm is $\mathrm{O}\left(V^{2}\right)$ for adjacency matrix representation, and $\mathrm{O}(V+E)$ for adjacency list representation

Exercise: DFS Traversal

- Trace the execution of dfs $(\mathrm{g}, 0)$ on:

- What if we were using DFS to search for a path from $0 . .5$? We would get 0-1-2-3-4-5. If we want the shortest (least edges/vertices) path we need to use BFS instead. See later slides for this.

Exercise: DFS Traversal

- Show the final state of the pre and st arrays after dfs (g,0):

Non-Recursive Depth First Search

- We can use a stack instead of recursion:

```
void dfs (Graph g, Edge e) {
    int i;
    Stack s = newStack();
    StackPush (s,e);
    while (!StackIsEmpty(s)) {
        e = StackPop(s);
        if (pre[e.w] == -1) {
            pre[e.w] = count++;
            st[e.w] = e.v;
                for (i = 0; i < g->nV; i++) {
                        if ((g->edges[e.w][i] == 1)&&
                                    (pre[i] == -1)) {
                            StackPush (s,mkEdge(g,e.w,i));
                }
                }
        }
        }
}
```


DFS Algorithms: Cycle Detection

- Cycle detection: does a given graph have any cycles?
- if and only if the DFS graph has back edges, it contains cycles
- we can easily detect this in the DFS search:

DFS Algorithms: Cycle Detection

- We are only checking for the existence of cycle, we are not returning it

```
//Return 1 if there is a cycle
int hasCycle (Graph g, Edge e) {
    int i, w = e.w;
    pre[w] = count++;
    st[w] = e.v;
    for (i=0; i < g->V; i++){
        if ((g->edges[w][i] == 1) && (pre[i] == -1)) {
            if(hasCycle (g, mkEdge(g,w,i)))
                    return 1;
            } else if( (g->edges[w][i] == 1) && i != e.v){
                //if it is not the predecessor
                return 1;
            }
    }
    return 0;
}
```


DFS Algorithms: Connectivity

- Each vertex belongs to a connected component
- The function connectedComponents sets up the array cc to indicate which component contains each vertex

Component 0

Component 1

Component 2

CC

0 0 0 1 1 2 2 2 2 $[0]$ $[1]$ $[2]$ $[3]$ $[4]$ $[5]$ $[6]$ $[7]$ $[8]$

DFS AlGORITHMS

- Connectivity:
- maintain an extra array cc for connected components

```
void connectedComponents (Graph g) {
    int v;
    count = 0;
    ccCount = 0;
    pre = malloc (g->nV *sizeof (int));
    cc = malloc (g->nV *sizeof (int));
    st = malloc (g->nV *sizeof (int));
    for (v = 0; v < g->nV; v++) {
        pre[v] = -1;
        st[v] = -1;
        CC[V] = - 1;
    }
    for (v = 0; v < g->V; v++) {
        if (pre[v] == -1) {
            connectedR (g, mkEdge(g,v,v));
            ccCount++;
        }
    }
}
```

```
void connectedR (Graph g, Edge e) {
    int i, w = e.w;
    pre[w] = count++;
    st[w] = e.v;
    cc[w] = ccCount;
    for (i=0; i < g->V; i++){
        if ((g->edges[currV][i] == 1) &&
            (pre[i] == -1)) {
            dfsR (g, mkEdge(g,w,i));
        }
    }
}
```


Breadth-First Search

- What if we want the shortest path between two vertices?
- DFS doesn't help us with this problem
- To find the shortest path between v and any vertex w
- we visit all the vertices adjacent to v (distance 1)
- then all the vertices adjacent to those we visited in the first step (distance 2)

Breadth-First Search

- We observed previously that we can simply replace the stack with a queue in the non-recursive implementation to get breadth -first search:

```
void bfs (Graph g, Edge e) {
    int i;
    Queue q = newQueue();
    QueueJoin(q,e);
    while (!QueueIsEmpty(q)) {
        e = QueueLeave(q);
        if(pre[e.w] == -1){
            pre[e.w] = count++;
            st[e.w] = e.v;
            for (i = 0; i < g->nV; i++) {
            if ((g->edges[e.w][i] != 0)&&
                                    (pre[i] == -1)) {
                                    QueueJoin (q,mkEdge(g,e.w,i));
                }
            }
        }
    }
}
```


Improved Breadth-First Search

- We can mark them as visited as we put them on the queue since the queue will retain their order. Queue will have at most V entries

```
void bfs (Graph g, Edge e) {
    int i;
    Queue q = newQueue();
    QueueJoin (q,e);
    pre[e.w] = count++;
    st[e.w] = e.v;
    while (!QueueIsEmpty(q))
        e = QueueLeave(q);
        for (i = 0; i < g->V; i++) {
            if ((g->edges[e.w][i] != 0)&&(pre[i] == -1)) {
                QueueJoin (q,mkEdge(g,e.w,i));
                        pre[i] = count++;
                        st[i] = e.w;
            }
        }
    }
}
```


Exercise: BFS Traversal

- Show the final state of the pre and st arrays after bfs($\mathrm{g}, 0$):

Write code to print out the shortest path from 0 to a given vertex v using the st array.

Breadth-First Search

- For one BFS: $\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ for adjacency matrix and O(V+E) for adjacency list
- We can do BFS for every node as root node, and store the resulting spanning trees in a $V \times V$ matrix to store all the shortest paths between any two vertices
- To store and calculate these spanning trees, we need
- memory proportional to $V^{*} V$
- time proportional to $V^{*} E$
- Then, we can
- return path length in constant time
- path in time proportional to the path length

