
Graph Search
Computing 2 COMP1927 16x1

PROBLEMS ON GRAPHS

 What kinds of problems do we want to solve on/via
graphs?

 Is there a simple path from A to B

 Is the graph fully-connected?

 Can we remove an edge and keep it fully connected?

 Which vertices are reachable from v? (transitive
closure)

 What is the cheapest cost path from v to w?

 Is there a cycle that passes through all V? (tour)

 Is there a tree that links all vertices (spanning tree)

 What is the minimum spanning tree?

 Can a graph be drawn in a place with no crossing
edges?

 Are two graphs “equivalent”? (isomorphism)

GRAPH SEARCH

 We learn about properties of a graph by

systematically examining each of its vertices and

edges, for example

 to compute the degree of all vertices, we visit each

vertex and count it’s edges

 for path related properties, we have to move from vertex

to vertex, along the graphs edges

 We implement a general graph search algorithms

we can use to solve a wide range of graph

problems

SIMPLE PATH SEARCH

 Problem: is there a path from vertex v to vertex w ?

 Approach to solving problem:

 examine vertices adjacent to v

 if any of them is w, then we are done

 otherwise check if there is a path from any of the adjacent

vertices

 repeat looking further and further from v

 Two different approaches to order of searching:

breadth-first search (BFS), depth-first search (DFS)

BFS VS DFS PATH FINDING

 Is there a path from a to h?

DFS VS BFS APPROACHES

 DFS and BFS are closely related.

 Implementation differs only their use of a stack

or a queue

 BFS implemented via a queue of to-be-visited vertices

 DFS implemented via a stack of to-be-visited vertices

(or recursion)

 Both approaches ignore some edges and avoid

cycles by remembering previously visited vertices.

EXERCISE: DFS AND BFS TRAVERSAL

 Show the DFS order we visit to determine

isPath(a,k)

 Show the BFS order we visit to determine

isPath(a,k)

 Assume neighbours are chosen in alphabetical order

DEPTH FIRST SEARCH

 Basic approach to depth-first search:

 visit and mark current vertex

 for each neighbour, traverse it recursively

 Notes:

 need a mechanism for "marking" vertices

 in fact, we number them as we visit them

(so that we could later trace path through graph)

 Make use of three global variables:

 count ... counter to remember how many vertices

traversed so far

 pre[] ... array saying order in which each vertex was

visited (pre stands for preorder)

 st[] … array storing the predecessor of each vertex (st

stands for spanning tree)

9

DEPTH FIRST SEARCH TREE

 The edges traversed in a graph walk form a tree

 It corresponds to the call tree of the recursive dfs

function

 Represents the original graph minus any cycles

or alternate paths

 We can use a tree to encode the whole search

process

 Each time we visit a vertex we record the

previous vertex we came from - if the graph is

connected this forms a spanning tree

 We store this in the st array

DEPTH FIRST SEARCH (DFS)

0 2

6

1 7

3 4

5

// Assume we start with dummy Edge {0,0}

// assume we start with count = 0

// pre[v] = -1 for all v

// st[v] = -1 for all v (stores the predecessor)

// assume adjacency matrix representation

void dfsR (Graph g, Edge e) {

Vertex i, w = e.w;

pre[w] = count++;

st[w] = e.v;

for (i=0; i < g->V; i++){

if ((g->edges[w][i] == 1) && (pre[i] == -1)

dfsR (g, mkEdge(g,w,i));

}

}

}

0 1

2

34

5

67

DEPTH FIRST SEARCH (DFS)

0 2

6

1 7

3 4

5

0

2

6

4

3

5

7

1
• the edges traversed in the graph walk form a tree

• the tree corresponds to the call tree of the depth first search

•and to the contents of the st array - spanning tree

• pre contains the pre-ordering of the vertices

0 1 2 3 4 5 6 7

0 7 1 4 3 5 2 6

0 7 0 4 6 3 2 4

pre

st

0 1

2

34

5

67

PROPERTIES OF DFS FORESTS

 If a graph is not connected it will produce a spanning forest

 If it is connected it will form a spanning tree

 we call an edge connecting a vertex with an ancestor in the DFS tree
that is not its parent a back edge

0 2

6

1 7

3 4

5

0

2

6

4

3

5

7

1

back edge

EXERCISE: DFS TRAVERSAL

 Which vertices will be visited during dfs(g):

 How can we ensure that all vertices are visited?

GRAPH SEARCH FUNCTION

 The graph may not be connected

 We need to make sure that we visit every connected
component:

void dfSearch (Graph g) {

int v;

count = 0;

pre = malloc (sizeof (int) * g->nV));

st = malloc(sizeof (int) * g->nV));

for (v = 0; v < g->nV; v++){

pre[v] = -1;

st[v] = -1;

}

for (v = 0; v < g->V; v++) {

if (pre[v] == -1)

dfsR (g, mkEdge(g,v,v));

}

}

• The work complexity of the graph search algorithm is O(V2) for adjacency

matrix representation, and O(V+E) for adjacency list representation

EXERCISE: DFS TRAVERSAL

 Trace the execution of dfs(g,0) on:

 What if we were using DFS to search for a path

from 0..5? We would get 0-1-2-3-4-5. If we want the

shortest (least edges/vertices) path we need to use

BFS instead. See later slides for this.

EXERCISE: DFS TRAVERSAL

 Show the final state of the pre and st arrays

after dfs(g,0):

NON-RECURSIVE DEPTH FIRST SEARCH

 We can use a stack instead of recursion:

void dfs (Graph g, Edge e) {

int i;

Stack s = newStack();

StackPush (s,e);

while (!StackIsEmpty(s)) {

e = StackPop(s);

if (pre[e.w] == -1) {

pre[e.w] = count++;

st[e.w] = e.v;

for (i = 0; i < g->nV; i++) {

if ((g->edges[e.w][i] == 1)&&

(pre[i] == -1)) {

StackPush (s,mkEdge(g,e.w,i));

}

}

}

}

}

DFS ALGORITHMS: CYCLE DETECTION

 Cycle detection: does a given graph have any cycles?

 if and only if the DFS graph has back edges, it contains cycles

 we can easily detect this in the DFS search:

DFS ALGORITHMS: CYCLE DETECTION

 We are only checking for the existence of cycle, we are

not returning it

//Return 1 if there is a cycle

int hasCycle (Graph g, Edge e) {

int i, w = e.w;

pre[w] = count++;

st[w] = e.v;

for (i=0; i < g->V; i++){

if ((g->edges[w][i] == 1) && (pre[i] == -1)) {

if(hasCycle (g, mkEdge(g,w,i)))

return 1;

} else if((g->edges[w][i] == 1) && i != e.v){

//if it is not the predecessor

return 1;

}

}

return 0;

}

DFS ALGORITHMS: CONNECTIVITY

 Each vertex belongs to a connected component

 The function connectedComponents sets up the

array cc to indicate which component contains

each vertex

cc

void connectedR (Graph g, Edge e) {

int i, w = e.w;

pre[w] = count++;

st[w] = e.v;

cc[w] = ccCount;

for (i=0; i < g->V; i++){

if ((g->edges[currV][i] == 1) &&

(pre[i] == -1)) {

dfsR (g, mkEdge(g,w,i));

}

}

}

DFS ALGORITHMS

 Connectivity:

 maintain an extra array cc for connected components

void connectedComponents (Graph g) {

int v;

count = 0;

ccCount = 0;

pre = malloc (g->nV *sizeof (int));

cc = malloc (g->nV *sizeof (int));

st = malloc (g->nV *sizeof (int));

for (v = 0; v < g->nV; v++) {

pre[v] = -1;

st[v] = -1;

cc[v] = -1;

}

for (v = 0; v < g->V; v++) {

if (pre[v] == -1) {

connectedR (g, mkEdge(g,v,v));

ccCount++;

}

}

}

BREADTH-FIRST SEARCH

 What if we want the shortest path between two

vertices?

 DFS doesn’t help us with this problem

 To find the shortest path between v and any vertex w

 we visit all the vertices adjacent to v (distance 1)

 then all the vertices adjacent to those we visited in the first

step (distance 2)

0 2

6

1 7

3 4

5

0

7

16

2 3

4 5

BREADTH-FIRST SEARCH

 We observed previously that we can simply replace

the stack with a queue in the non-recursive

implementation to get breadth -first search:

void bfs (Graph g, Edge e) {

int i;

Queue q = newQueue();

QueueJoin(q,e);

while (!QueueIsEmpty(q)) {

e = QueueLeave(q);

if(pre[e.w] == -1){

pre[e.w] = count++;

st[e.w] = e.v;

for (i = 0; i < g->nV; i++){

if ((g->edges[e.w][i] != 0)&&

(pre[i] == -1)) {

QueueJoin (q,mkEdge(g,e.w,i));

}

}

}

}

}

IMPROVED BREADTH-FIRST SEARCH

 We can mark them as visited as we put them on the

queue since the queue will retain their order. Queue

will have at most V entries

void bfs (Graph g, Edge e) {

int i;

Queue q = newQueue();

QueueJoin (q,e);

pre[e.w] = count++;

st[e.w] = e.v;

while (!QueueIsEmpty(q)) {

e = QueueLeave(q);

for (i = 0; i < g->V; i++) {

if ((g->edges[e.w][i] != 0)&&(pre[i] == -1)) {

QueueJoin (q,mkEdge(g,e.w,i));

pre[i] = count++;

st[i] = e.w;

}

}

}

}

EXERCISE: BFS TRAVERSAL

 Show the final state of the pre and st arrays

after bfs(g,0):

Write code to print out the shortest path from 0 to a

given vertex v using the st array.

BREADTH-FIRST SEARCH

 For one BFS: O(V^2) for adjacency matrix and

O(V+E) for adjacency list

 We can do BFS for every node as root node, and

store the resulting spanning trees in a V x V matrix

to store all the shortest paths between any two

vertices

 To store and calculate these spanning trees, we

need

 memory proportional to V * V

 time proportional to V * E

 Then, we can

 return path length in constant time

 path in time proportional to the path length

