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WEIGHTED GRAPHS

 Some applications require us to consider a cost or 

weight

 costs/weights are assigned to edges

 Often use a geometric interpretation of weights

 low weight - short edge

 high weight  - long edge

 Weights are not always geometric

 Some weights can be negative

 this can make some problems more difficult!

 Assume in our graphs we have non-negative weights



EXAMPLE: WEIGHTED GRAPHS

 Example: “map” of airline flight routes

 vertices = airports

 edge = flights

 weights = distance/time/price



WEIGHTED GRAPH IMPLEMENTATION

 Adjacency Matrix Representation

 change 0 and 1 to float/double

 Need a special float constant to indicate NO_EDGE

 Can’t use 0. It may be a valid weight

 Adjacency Lists Representation

 add float weight to each node

 This will work for directed or undirected graphs



ADJACENCY MATRIX WITH WEIGHTS



ADJACENCY LIST REPRESENTATION WITH

WEIGHTS



WEIGHTED GRAPH PROBLEMS

 Minimum spanning tree

 find the minimal weight set of edges that connect all 

vertices in a weighted graph

 might be more than one minimal solution

 we will assume undirected graph

 we will assume non-negative weights

 Shortest Path Problem
 Find minimum cost path to from one vertex to another

 Edges may be directed or undirected

 We will assume non-negative weights



MINIMAL SPANNING TREE PROBLEM

 Origins

 Otakar Boruvka, electrical engineer in 1926 

 most economical construction of electric power network 

 Some modern applications of MST: 

 network layout: telephone, electric, computer, road, cable

 Has been studied intensely, still looking for faster 

algorithms
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MINIMUM SPANNING TREES (MST)

 Reminder: Spanning tree ST of graph G(V,E)

 ST is a subgraph of G

 (G'(V,E') where E' is a subset of E) 

 ST is connected and acyclic

 Minimum spanning tree MST of graph G

 MST is a spanning tree of G

sum of edge weights is no larger than any other 

ST 

 Problem: how to (efficiently) find MST for graph G?
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KRUSKAL’S MST ALGORITHM

 One approach to computing MST for graph 

G(V,E): 

 start with empty MST 

 consider edges in increasing weight order 

 add edge if it does not form a cycle in MST 

 repeat until V-1 edges are added 

 Critical operations: 

 iterating over edges in weight order 

 checking for cycles in a graph 
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EXECUTION TRACE OF KRUSKAL’S MST
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EXERCISE: TRACE KRUSKAL’S

ALGORITHM



KRUSKAL’S ALGORITHM: MINIMAL SPANNING TREE

 Implementation 1: Two main parts:

 sorting edges according to their length (E * log E)

 check if adding an edge would create a cycle 

 Could check for cycles using DFS ... but too expensive 

 use Union-Find data structure from Sedgewick ch.1 

 If we use this the cost of sorting dominates so over all 

 E log E

 Implementation 2: Using a pq instead of full sort

 Create a priority queue using weights as priority

 Allows us to remove edges from pq in weighted order

 O(E + X *log V), with X = number of edges shorter than 

the longest edge in the MST
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PRIM’S ALGORITHM: MINIMAL SPANNING TREE

 Another approach to computing MST for graph 
G(V,E): 

 start from any vertex s and empty MST 
 choose edge not already in MST to add to MST 

must not contain a self-loop 

must connect to a vertex already on MST 

must have minimal weight of all such edges

 check to see whether adding the new edge 
brought any of the non-tree vertices closer to the 
tree

 repeat until MST covers all vertices

 Critical operations: 
 checking for vertex being connected in a graph 

 finding min weight edge in a set of edges

 updating min weights in a set of edges 



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, 

we successively add  the shortest vertex connecting the 

subgraph with the rest of the nodes to the tree
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 0 – 5 (60)
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 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a sub-graph containing only one vertex, we 

successively add  the shortest vertex connecting the sub-graph 

with the rest of the nodes to the tree

 Edges in pink are in the fringe
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PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46) 

 6 – 7 (25)



WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 6 – 7 (25)



WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph
with the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)
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 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46) 

 6 – 7 (25)



PRIM’S ALGORITHM

 Prim’s algorithm is just a graph search –

 instead of depth  first (using a stack)  or breadth 

first (using a queue), 

we choose a  shortest first` strategy using a 

priority queue

 It can be implemented to run in 

 O(E * log V) steps 

if the steps listed above are implemented 

efficiently (using adjacency lists and heap), 

 O(V2) for adjacency matrix

See lecture code for an implementation
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EXERCISE: TRACE PRIM’S ALGORITHM



SHORTEST PATHS

 Weight of a path p in graph G 

 sum of weights on edges along path (weight(p)) 

 Shortest path between vertices s and t 

 a simple path p where s = first(p), t = last(p) 

 no other simple path q has weight(q) < weight(p) 

 Problem: how to (efficiently) find 

shortestPath(G,s,t)? 

 Assumptions: weighted graph, no negative weights.



EXERCISE: 

 What is the minimum spanning tree?

 What is the shortest path from 0 to 3?

 What is the least hops path (shortest unweighted 

path) from 0 to 2?
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SHORTEST PATH ALGORITHMS

• Shortest-path is useful in a wide range of 
applications 

 robot navigation 

 finding routes in maps 

 routing in data/computer networks 

• Flavours of shortest-path 

 source-target (shortest path from s to t) 

 single-source (shortest paths from s to all other V) 

 all-pairs (shortest paths for all (s,t) pairs) 



DIJKSTRA’S ALGORITHM

SINGLE SOURCE SHORTEST PATHS

st



DIJKSTRA’S ALGORITHM: 

SINGLE SOURCE SHORTEST PATH

 Given: 

 weighted digraph/graph G, source vertex s

 Result: 

 shortest paths from s to all other vertices

 dist[] : V-indexed array of distances from s

 st[] : V-indexed array of predecessors in shortest 

path 

 Note: shortest paths can be viewed as tree rooted at s



EDGE RELAXATION

 Relaxation along edge e from v to w 

 dist[v] is length of some path from s to v 

 dist[w] is length of some path from s to w 

 if e gives shorter path s to w via v, 

then update dist[w] and st[w] 

 Relaxation updates data on w if we find a shorter path to s.

if (dist[v] + e.weight < dist[w]) { 

dist[w] = dist[v] + e.weight; 

st[w] = v; 

} 

st[v] = ?, st[w] = ? st[v] = ?, st[w] = v 



DIJKSTRA’S ALGORITHM

 Data: 

 G, s, dist[], st[], and a pq containing the set of vertices 

whose shortest path from s is not yet known 

 Algorithm: 

 initialise dist[] to all ∞, except dist[s]=0

 Initialise pq with all V, with dist[v] as priority 

 v = deleteMin from pq

 Get e’s that connect v to w in pq  

 relax along e if new dist is better

 repeat until pq is empty



EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM



...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHN



...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM



DIJKSTRA’S RESULTS

 After the algorithm has completed:

 Shortest Path distances are in dist array

 Actual path can be traced back from endpoint via the 

predecessors in the st array



EXERCISE

 Assume we have just completed running Dijkstra’s 

algorithm with starting vertex v. Write code to print 

out the path from vertex v to w or “No path” if the 

path does not exist. (It is ok to print it in reverse 

order.)



TRACE EXECUTION OF DIJKSTRA’S ALGORITHM

FROM STARTING VERTEX 2 


