
Weighted Graphs
Computing 2 COMP1927 16x1

Sedgewick Part 5: Chapter 20.1 -20.4

21.1 - 21.3

WEIGHTED GRAPHS

 Some applications require us to consider a cost or

weight

 costs/weights are assigned to edges

 Often use a geometric interpretation of weights

 low weight - short edge

 high weight - long edge

 Weights are not always geometric

 Some weights can be negative

 this can make some problems more difficult!

 Assume in our graphs we have non-negative weights

EXAMPLE: WEIGHTED GRAPHS

 Example: “map” of airline flight routes

 vertices = airports

 edge = flights

 weights = distance/time/price

WEIGHTED GRAPH IMPLEMENTATION

 Adjacency Matrix Representation

 change 0 and 1 to float/double

 Need a special float constant to indicate NO_EDGE

 Can’t use 0. It may be a valid weight

 Adjacency Lists Representation

 add float weight to each node

 This will work for directed or undirected graphs

ADJACENCY MATRIX WITH WEIGHTS

ADJACENCY LIST REPRESENTATION WITH

WEIGHTS

WEIGHTED GRAPH PROBLEMS

 Minimum spanning tree

 find the minimal weight set of edges that connect all

vertices in a weighted graph

 might be more than one minimal solution

 we will assume undirected graph

 we will assume non-negative weights

 Shortest Path Problem
 Find minimum cost path to from one vertex to another

 Edges may be directed or undirected

 We will assume non-negative weights

MINIMAL SPANNING TREE PROBLEM

 Origins

 Otakar Boruvka, electrical engineer in 1926

 most economical construction of electric power network

 Some modern applications of MST:

 network layout: telephone, electric, computer, road, cable

 Has been studied intensely, still looking for faster

algorithms

9

MINIMUM SPANNING TREES (MST)

 Reminder: Spanning tree ST of graph G(V,E)

 ST is a subgraph of G

 (G'(V,E') where E' is a subset of E)

 ST is connected and acyclic

 Minimum spanning tree MST of graph G

 MST is a spanning tree of G

sum of edge weights is no larger than any other

ST

 Problem: how to (efficiently) find MST for graph G?

1
0

KRUSKAL’S MST ALGORITHM

 One approach to computing MST for graph

G(V,E):

 start with empty MST

 consider edges in increasing weight order

 add edge if it does not form a cycle in MST

 repeat until V-1 edges are added

 Critical operations:

 iterating over edges in weight order

 checking for cycles in a graph

1
1

EXECUTION TRACE OF KRUSKAL’S MST

1
2

EXERCISE: TRACE KRUSKAL’S

ALGORITHM

KRUSKAL’S ALGORITHM: MINIMAL SPANNING TREE

 Implementation 1: Two main parts:

 sorting edges according to their length (E * log E)

 check if adding an edge would create a cycle

 Could check for cycles using DFS ... but too expensive

 use Union-Find data structure from Sedgewick ch.1

 If we use this the cost of sorting dominates so over all

 E log E

 Implementation 2: Using a pq instead of full sort

 Create a priority queue using weights as priority

 Allows us to remove edges from pq in weighted order

 O(E + X *log V), with X = number of edges shorter than

the longest edge in the MST

1
4

PRIM’S ALGORITHM: MINIMAL SPANNING TREE

 Another approach to computing MST for graph
G(V,E):

 start from any vertex s and empty MST
 choose edge not already in MST to add to MST

must not contain a self-loop

must connect to a vertex already on MST

must have minimal weight of all such edges

 check to see whether adding the new edge
brought any of the non-tree vertices closer to the
tree

 repeat until MST covers all vertices

 Critical operations:
 checking for vertex being connected in a graph

 finding min weight edge in a set of edges

 updating min weights in a set of edges

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex,

we successively add the shortest vertex connecting the

subgraph with the rest of the nodes to the tree

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a sub-graph containing only one vertex, we

successively add the shortest vertex connecting the sub-graph

with the rest of the nodes to the tree

 Edges in pink are in the fringe

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph
with the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S ALGORITHM

 Prim’s algorithm is just a graph search –

 instead of depth first (using a stack) or breadth

first (using a queue),

we choose a shortest first` strategy using a

priority queue

 It can be implemented to run in

 O(E * log V) steps

if the steps listed above are implemented

efficiently (using adjacency lists and heap),

 O(V2) for adjacency matrix

See lecture code for an implementation

2
5

EXERCISE: TRACE PRIM’S ALGORITHM

SHORTEST PATHS

 Weight of a path p in graph G

 sum of weights on edges along path (weight(p))

 Shortest path between vertices s and t

 a simple path p where s = first(p), t = last(p)

 no other simple path q has weight(q) < weight(p)

 Problem: how to (efficiently) find

shortestPath(G,s,t)?

 Assumptions: weighted graph, no negative weights.

EXERCISE:

 What is the minimum spanning tree?

 What is the shortest path from 0 to 3?

 What is the least hops path (shortest unweighted

path) from 0 to 2?

0

1

2

3

0.2

0.1

0.3

0.4

0.4

SHORTEST PATH ALGORITHMS

• Shortest-path is useful in a wide range of
applications

 robot navigation

 finding routes in maps

 routing in data/computer networks

• Flavours of shortest-path

 source-target (shortest path from s to t)

 single-source (shortest paths from s to all other V)

 all-pairs (shortest paths for all (s,t) pairs)

DIJKSTRA’S ALGORITHM

SINGLE SOURCE SHORTEST PATHS

st

DIJKSTRA’S ALGORITHM:

SINGLE SOURCE SHORTEST PATH

 Given:

 weighted digraph/graph G, source vertex s

 Result:

 shortest paths from s to all other vertices

 dist[] : V-indexed array of distances from s

 st[] : V-indexed array of predecessors in shortest

path

 Note: shortest paths can be viewed as tree rooted at s

EDGE RELAXATION

 Relaxation along edge e from v to w

 dist[v] is length of some path from s to v

 dist[w] is length of some path from s to w

 if e gives shorter path s to w via v,

then update dist[w] and st[w]

 Relaxation updates data on w if we find a shorter path to s.

if (dist[v] + e.weight < dist[w]) {

dist[w] = dist[v] + e.weight;

st[w] = v;

}

st[v] = ?, st[w] = ? st[v] = ?, st[w] = v

DIJKSTRA’S ALGORITHM

 Data:

 G, s, dist[], st[], and a pq containing the set of vertices

whose shortest path from s is not yet known

 Algorithm:

 initialise dist[] to all ∞, except dist[s]=0

 Initialise pq with all V, with dist[v] as priority

 v = deleteMin from pq

 Get e’s that connect v to w in pq

 relax along e if new dist is better

 repeat until pq is empty

EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM

...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHN

...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM

DIJKSTRA’S RESULTS

 After the algorithm has completed:

 Shortest Path distances are in dist array

 Actual path can be traced back from endpoint via the

predecessors in the st array

EXERCISE

 Assume we have just completed running Dijkstra’s

algorithm with starting vertex v. Write code to print

out the path from vertex v to w or “No path” if the

path does not exist. (It is ok to print it in reverse

order.)

TRACE EXECUTION OF DIJKSTRA’S ALGORITHM

FROM STARTING VERTEX 2

