
Balanced Trees
Computing 2 COMP1927 16x1

BST PERFORMANCE ISSUES

 Performance of insert and search good on average,

but poor for some (common) special cases (items

inserted in sorted order O(n))

 Goal:

 build binary search trees with worst case performance of

O(log n)

 A perfectly balanced binary tree (weight/size

balanced)

 |size(LeftSubtree) - size(RightSubtree)| < 2 for every

node

 A less stringent definition (height balanced)

 |height(leftsubtree) - height(rightSubtree)| < 2 for every

node

ARE THESE TREES BALANCED?

4 4

/ \ / \

2 5 2 5

/ \ \ \

1 3 3 6

4 4

/ \ /

3 5 2

/ \ / \

2 6 1 3

/ \

1 7

APPROACH 1: GLOBAL REBALANCING

 Insert nodes normally

 Have a function to rebalance the whole tree

 The tree becomes perfectly balanced

 How? The best key to have at the root of a tree is

 The median

 Will partition all the keys equally into left and right sub-trees

APPROACH 1: BASIC IDEA

 Move median to the root of the tree

 Get the median of the left sub-tree and move it to the

root of the left sub-tree

 Get the median of the right sub-tree and move it to the

root of the right sub-tree

 How can we even find the median in a size n tree?

 Median will be the (n/2th) node - similar to finding the ith

item in a BST

 Need to find n/2th node and move it to the root

ROTATIONS

 We can move nodes up to the root using rotations

 Left rotation

 Makes the original root the LEFT sub-child of the new

root

 Right rotation

 Makes the original root the RIGHT sub-child of the new

root

MOVING NODES THROUGH ROTATION

 Move node n2 up

 t1 < n2 < t2 < n1 < t3

 rotation leaves the relative order of the nodes intact!

 we can use it to successively move a node up to the
root

n1

n2

t1 t2

t3

n2

n1
t1

t2 t3

rotate right

rotate left

MOVE NODES THROUGH ROTATION

//Beware: this does not update the size fields in the nodes

link rotateRight(link n1) {

if(n1 == NULL || n1 == emptyTree) return n1;

link n2 = n1->left;

if(n2 == emptyTree) return n1;

n1->left = n2->right;

n2->right = n1;

return n2;

}

//Left rotation is similar with n1/n2 switched and left/right

switched.

n1

n2

t1 t2

t3

n2

n1

t1

t2 t3

rotate right

rotate left

PARTITIONING

 Partition:

 move the kth element of a tree up to the root

 similar to select:

link partitionR (link tree, int k) {

if (tree == emptyTree) {

return tree;

}

int leftSize = tree->left->size;

if (leftSize > k) {

tree->left = partitionR (tree->left, k));

tree = rotateR (tree);

}

if (leftSize < k) {

tree->right = partitionR (tree->right, k – 1 -leftSize);

tree = rotateL (tree);

}

return (tree);

}

n1

n2

t1 t2

t3

n2

n1

t1

t2 t3

rotate right

rotate left

6

2 8

1 3 7 9

4

rotate left

6

2 8

1 4 7 9

3

n1

n2

t1 t2

t3

n2

n1

t1

t2 t3

rotate right

rotate left

6

2 8

1 3 7 9

4

6

2 8

1 4 7 9

3

6

4 8

1

7 9

3

2

rotate left

rotate left

4

8
1

7 9

3

2 6

n1

n2

t1 t2

t3

n2

n1

t1

t2 t3

rotate right

rotate left

6

2 8

1 3 7 9

4

6

2 8

1 4 7 9

3

6

4 8

1

7 9

3

2

rotate right

APPROACH 1: GLOBAL REBALANCING

 Move the median node to the root by partitioning on

size/2

 Balance the left sub-tree

 Balance the right sub-tree

link balance(link tree){

if(tree != emptyTree){

if(tree->size >= 2){

tree = partition(tree,tree->size/2);

tree->left = balance(tree->left);

tree->right = balance(tree->right);

}

}

return tree;

}

APPROACH 1: PROBLEMS

 Cost of rebalancing – O(n) for many trees or

O(nlogn) for degenerate trees

 What if we insert more keys?

 Rebalance every time – too expensive

 Rebalance periodically

 Every ‘k’ insertions

 Rebalance when the “unbalance” exceeds some threshold

 Either way, we tolerate worse search performance

for periods of time. Does it solve the problem for

dynamic trees? ... Not really.

APPROACH 2: LOCAL REBALANCING

 Global approach walks through every node of the

tree and balances its sub-trees

 Perfectly balanced tree

 Local approach

 do incremental operations to improve the balance of the

over-all tree

 Tree may not end up perfectly balanced

LOCAL APPROACHES TO REBALANCING

 Randomisation:

 the worst case for binary search trees occurs relatively

frequently (partially sorted input)

 use random decision making to dramatically reduce

chance of worst case scenario

 Amortisation:

 do extra work at one time to avoid more work later

 Optimisation:

 maintain structural information to be able to provide

performance guarantees

RANDOMISED BST

 BST ADT typically has no control over the order keys are

supplied.

 To minimise the probability of ending up with a

degenerate tree, we make a randomised decision at

which level to insert a node.

 at each level, the probability depends on the size of the
remaining tree

 Do normal leaf insertion most of the time

 Randomly do insertion at root.

 Insert new item at the root of the appropriate sub-tree

 Rotate it to the root of the main tree

BST: INSERTING AT THE ROOT

 Let us start with a simpler version of the problem:

 How can we insert a node at the root instead of the

leaves?

 Problem:

 this potentially already requires to re-arrange nodes in the

whole tree

 Solution:

 we insert at the leaf position and move it up the tree without

changing the relative order of the items

INSERTING AT ROOT

 Inserting at the root:

 base case:

 tree is empty

 recursive case:

1.insert it at root of appropriate subtree

2.lift root of subtree by rotation

6

2 8

1 3 7 9

4

INSERTING AT ROOT

6

2 8

1 3 7 9

4

6

2 8

1 3 7 9

4

5

6

2 8

1 3 7 9

5

4

6

2 8

1 5 7 9

3

4

3

6

5 8

2 7 9

1

5

6

8

7 9

4

1

2

5insert

rotate left

4

3

INSERTING AT ROOT

 What is the work complexity of root insertion?

 same as insertion at leaf: O(log n)

link insertAtRootR (link currentLink, Item item) {

if (currentLink == emptyTree) {

return (NEW (item, emptyTree, emptyTree, 1));

}

if (less (key (item), key (currentLink->item))) {

currentLink->left = insertAtRootR (currentLink->left, item);

currentLink = rotateRight (currentLink);

} else {

currentLink->right = insertAtRootR (currentLink->right, item);

currentLink = rotateLeft (currentLink);

}

return (currentLink);

}

• Almost like insert at leaf:

INSERTING AT ROOT

 same work complexity as insertion at leaf, but extra

actual work done for each insertion

 recently inserted items are close to the root

 access time less for items inserted most recently

 depending on the application. this might be a significant

advantage

RANDOMISED BST

 Randomised insertion:

link insertRand (link currTree, Item item) {

Key currKey = key (currTree->item);

if (currTree == emptyTree) {

return NEW (item, emptyTree, emptyTree, 1);

}

if (rand () < RAND_MAX/(currTree->size+1)) {

return (insertRootR (currTree, item));

} else if (less (key (item), currKey) {

currTree->left = insertRand (currTree->left, item);

} else {

currTree->right = insertRand (currTree->right, item);

}

currTree->size++;

return currTree;

}

RANDOMISED TREES

 Properties:

 Building a randomised BST is equivalent to building a
standard BST from a random initial permutation of keys

 Worst, best and average case performance are the
same as for standard BST, but no penalty if initial
sequence is ordered or partially ordered

RANDOMISED TREES DELETION

 Can use a similar approach for deletion

 Make randomised decision whether to replace the

deleted node with

 in-order successor from right sub-tree

 in-order predecessor from left sub-tree

AMORTISATION: SPLAY TREES

 Idea:

 Whenever an operation has to `walk down` the spine of a tree,
improve balance of tree

 Use root insertion, but with a slight twist: whenever a node has to
move either two successive left or two right rotations to move up,
move the parent first

 considers parent-child-grandchild orientation

 Some splay tree implementations also do rotation-in-search:

 The node of the most recently searched for item (or last node in path
of a dead end search) becomes the new root.

 can improve balance of tree, but makes search more expensive

SPLAY TREE DOUBLE ROTATION CASES

 Cases for splay tree double-rotations:

 case 1: grandchild is left-child of left-child

 case 2: grandchild is right-child of left-child

 case 3: grandchild is left-child of right-child

 case 4: grandchild is right-child of right-child

DOUBLE ROTATION: LEFT OF LEFT

 Rotate at y’s grandparent z first

 Then rotate a parent x

DOUBLE ROTATION: RIGHT OF LEFT

 Just rotate at x’s parent, y, then at x’s parent z

• Worst case example for normal root insertion: move smallest item up a

degenerated tree using normal right rotations from leaf.

•

moving node up by

repeated right

rotations over

parent node

height of tree

stays the same!

2

3

4

5

6

7

8

9

1

1

2

3

4

5

6

7

8

9

2

• Example worst case splay insertion: After inserting 1 in this worst case

degenerate tree: move smallest item up a degenerated tree using right

rotation of grand parent node, followed by right rotation of parent node:

1

two nodes on

most levels

8

9

7

6

5

4

2

3

10

11

1

2

3

4

5

6

7

8

9

10

11

• Example Other worst case : Inserting 12 into this degenerate tree. There

would be no grandparent, relationship between 11 and 12 as 11 has no

right child. So we just insert 12 as the parent and make 11 the left child.

(The same as if we inserted 12 then did a rotate left at 12’s parent).

1

2

3

4

5

6

7

8

9

10

11

12

• In this situation insertion is O(1) but we are left

with a degenerate tree.

WORK COMPLEXITY OF SPLAY TREE

OPERATIONS

 Insertion

 worst case (wrt work): item is inserted at the end of a

degenerate tree

 O(n) steps necessary, but tree height reduced by a factor of

two

 worst case (wrt resulting tree): item inserted at the root

of a degenerate tree

 Constant number of steps necessary

 even in the worst case, it’s not possible to repeatedly

have O(n) steps for insertion

WORK COMPLEXITY OF SPLAY TREE

OPERATIONS

 Assuming we splay for both insert and search

 Assume N initial inserts, then M searches

 NlogN insert cost

 MlogN search cost

 Gives good (amortized) cost overall. But no guarantee for

any individual operation;

 worst-case behaviour may still be O(N)

 It is based on the idea that if you recently used something

you'll likely need it again soon

 keeps the most commonly used data near the top

EXERCISE

 Insert the following keys into a splay tree:

10 5 12 11 3

 Final Solution

3

\

10

/ \

5 11

\

12

