Graph Algorithms and Computability

Computing 2 COMP1927 16x1
Hamilton path:
 - is there a simple path connecting two vertices that visits each vertex in the graph exactly once?

Hamilton tour:
 - is there a cycle in the graph that visits each vertex exactly once?

Named after the Irish mathematician, physicist and astronomer Sir William Rowan Hamilton (1805 - 1865)
Brute force search: we can adapt the simple path search to look for a Hamilton path:

- keep a counter of vertices visited in the current path
- only accept a path if the counter indicates that it contains all vertices
HAMilton Path

- For simple paths we know that
 - if there is no simple path from t to w, then there is no simple path from v to w via t
 - so, there is no point visiting a vertex twice in the algorithm

- Unfortunately, this is not true for Hamilton paths
 - we have to inspect every possible path in the graph!

- What does this mean for the number of recursive calls necessary to find a Hamilton path?
 - in a complete graph, we have $V!$ different paths ($\approx (V/e)^V$)

- Finding whether there is a Hamilton Path in a graph is an NP-complete problem
NP (Non-deterministic Polynomial) Class of Problems

- A problem is in the class \(NP \), if it is a decision problem and the correctness of its answer can be checked in polynomial time.
- A problem is in the class \(P \), if it is a decision problem and its answer can be computed in polynomial time.
- A problem is \(NP \) complete, if it is in \(NP \) and at least as difficult as the most difficult problem in \(NP \).
- No polynomial algorithms are known for these problems.
- Examples of \(NP \) complete problems:
 - Hamilton path problem
 - Travelling salesman problem
 - Knapsack problem
Euler Path

- Is there a path in the graph connecting two vertices that uses each edge in the graph exactly once?
 - vertices can be visited any number of times
- If the path is from a vertex back to itself it is called an Euler tour
- Named after the Swiss mathematician and physicist Leonard Euler (1707-1783):
 - is there a way to cross all the bridges of Königsberg exactly once on a walk through the town?
Euler Path

- Naive recursive algorithm would result in factorial time performance
- Euler path problem turns out to be *much easier* than Hamilton Path
 - $O(E+V)$ adjacency list
 - $O(V^2)$ adjacency matrix
- A graph has an Euler tour if and only if
 - it is connected, and
 - all vertices are of even degree
- A graph has an Euler path if and only if
 - it is connected, and
 - exactly two of its vertices are of odd degree