# Graph Algorithms and Computability 

Computing 2 COMP1927 16x1

## Hamilton Path

o Hamilton path:

- is there a simple path connecting two vertices that visits each vertex in the graph exactly once?
o Hamilton tour:
- is there a cycle in the graph that visits each vertex exactly once?
- Named after the Irish mathematician, physicist and astronomer Sir William Rowan Hamilton (1805-1865)


## Hamilton Path

- Brute force search: we can adapt the simple path search to look for a Hamilton path:
- keep a counter of vertices visited in the current path
- only accept a path if the counter indicates that it contains all vertices



## Hamilton Path

- For simple paths we know that
- if there is no simple path from $t$ to $w$, then there is no simple path from $v$ to $w$ via $t$
- so, there is no point visiting a vertex twice in the algorithm
- Unfortunately, this is not true for Hamilton paths
- we have to inspect every possible path in the graph!
- What does this mean for the number of recursive calls necessary to find a Hamilton path?
- in a complete graph, we have $V$ ! different paths $\left(\approx(V / e)^{V}\right)$
- Finding whether there is a Hamilton Path in a graph is an $N P$-complete problem


## NP (Non-deterministic Polynomial) Class of

 Problems- A problem is in the class $N P$, if it is a decision problem and the correctness of its answer can be checked in polynomial time
- A problem is in the class $P$, if it is a decision problem and its answer can be computed in polynomial time
- A problem is $N P$ complete, if it is in $N P$ and at least as difficult as the most difficult problem in $N P_{N P}$
- No polynomial algorithms are known for these problems
- Examples of NP complete problems: $P$ NP complete * Hamilton path problem
* Travelling salesman problem
* Knapsack problem


## Euler Path

- Is there a path in the graph connecting two vertices that uses each edge in the graph exactly once?
- vertices can be visited any number of times
- If the path is from a vertex back to itself it is called an Euler tour
- Named after the Swiss mathematician and physicist Leonard Euler (1707-1783):
- is there a way to cross all the bridges of Königsberg exactly once on a walk through the town?



## Euler Path

- Naive recursive algorithm would result in factorial time performance
- Euler path problem turns out to be much easier than Hamilton Path
- $\mathrm{O}(\mathrm{E}+\mathrm{V})$ adjacency list
- O(V^2) adjacency matrix
- A graph has an Euler tour if and only if
- it is connected, and
- all vertices are of even degree
- A graph has an Euler path if and only if
- it is connected, and
- exactly two of its vertices are of odd degree

