
Symbol Tables
Computing 2 COMP1927 16x1

SYMBOL TABLES

 Searching: like sorting, searching is a fundamental

element of many computational tasks

 data bases

 dictionaries

 compiler symbol tables

 Symbol table: a symbol table is a data structure of

items with keys that supports at least two basic

operations:

 insert a new item (key,value)

 (student id, student data) – in a database

 (word, meaning) – in a dictionary

 return an item identified by a given key

ABSTRACTING OVER CONCRETE ITEM AND

KEY TYPE

 We abstract over the concrete item type by defining

these types and some basic operations on them in

a separate header file, Item.h:
typedef int Key;

struct record {

Key keyval;

char value[10];

};

typedef struct record *Item;

#define key(A) ((A)->keyval)

#define eq(A,B) {A == B}

#define less(A,B) {A < B}

#define NULLitem NULL // special value for no item

int ITEMscan (Item *); // read from stdin

int ITEMshow (Item); // print to stdout

SYMBOL TABLE AS ABSTRACT DATA TYPE

 Symbol Table ADT:

typedef struct symbolTable *ST;

// new symbol table

ST STinit (void);

// number of items in the table

int STcount (ST);

// insert an item

void STinsert (ST, Item);

// find item with given key

Item STsearch (ST, Key);

// delete given item

void STdelete (ST, Item);

// find nth item

Item STselect (ST, int);

// visit items in order of their keys

void STsort (ST, void (*visit)(Item));

SYMBOL TABLE AS ABSTRACT DATA TYPE

 How do we deal with duplicate keys?

 depends on the application:

 Do not allow duplicates

 Insertion of duplicates does nothing – fails silently

 Insertion of duplicates returns an error

 store all items with the same key in one entry in the symbol

table

 store duplicates as separate entries in the symbol table

 Our approach will not allow duplicates and ignore

attempts to insert them.

A SIMPLE SYMBOL TABLE CLIENT PROGRAM

 We start by writing a simple client program:

 reads items from stdin

 insert item if not yet in table

 print resulting table in order

 print out the smallest, largest and median values.

SYMBOL TABLE IMPLEMENTATIONS

 Symbol tables can be represented in many ways:

 key-indexed array (max # items, restricted key space)

 key-sorted arrays (max # items, using binary search)

 linked lists (unlimited items, sorted list?)

 binary search trees (unlimited items, traversal orders)

 Costs (assuming N items):

Type Search Cost Min Max Average

Key Indexed Array O(1) O(1) O(1)

Key sorted Array O(1) O(log n) O(log n)

Linked List O(1) O(n) O(n)

Binary Search Tree O(1) O(n) O(log n)

8

IMPLEMENTATION : KEY INDEXED ARRAY

 Use key to determine index position in the array

 requires dense keys (i.e., few gaps)

 keys must be integral (or easy to map to integral value)

 Properties:

 insert, search and delete are constant time O(1)

 init, select, and sort are linear in table size

NULLitem NULLitem NULLitem

[0] [1] [2] [7][6][5][3] [4]

1,data 3,data 4,data 5,data 7,dataitems

IMPLEMENTATION : BINARY SEARCH TREES

 Binary tree:

 key (and maybe items) in internal nodes

 key in a node is

 larger than any key in its left subtree

 smaller than any key in its right subtree

 Properties:

 init & count are constant time

 insert, delete, search & select are logarithmic in the

number of stored items in average case, linear in worst

case (degenerate tree)

 sort linear in numbers of stored items

IMPLEMENTATION : BINARY SEARCH TREES

 In our implementation, we use a dummy node to represent empty
trees

 Representation of an empty tree:

5

previously:

5

0 0

• Representation of a tree with a single value node:

previously: new implementation :

0 dummy value

new implementation :

BINARY SEARCH TREE: INSERTION OF NEW

NODE

 Insert item with key ‘3’ into tree:

5

0

02

0

3

rootNodeLink

BINARY SEARCH TREE: INSERTION OF NEW

NODE

 Insert item with key ‘3’ into tree:

5

0

02

rootNodeLink

0

3

0

BINARY SEARCH TREE

 To save space, all the empty subtrees are actually

represented by the same struct:

5

2

3

0 emptyTree

IMPLEMENTATION : BINARY SEARCH TREES

 :In our implementation, we use a dummy node to represent

empty trees:

struct st{

link root;

}

typedef struct STnode* link;

struct STnode {

Item item;

link left,;

link right;

int size; //Size of sub-tree rooted at this node

};

static link emptyTree = NULL; // dummy node representing empty tree

static link newNode(Item item, link l, link r, int size);

ST STinit (void) {

ST st = malloc(sizeof(struct st));

if(emptyTree == NULL) //only one actual copy of emptyTree is ever created

emptyTree = newNode(NULLitem, NULL, NULL, 0);

st->root = emptyTree;

return st;

}

IMPLEMENTATION : BINARY SEARCH TREES

 Implementation of recursive insertion:

link insertR (link currentLink, Item item) {

Key v = key (item);

Key currentKey = key (currentLink->item);

if (currentLink == emptyTree) {

return newNode(item, emptyTree, emptyTree, 1);

}

if (less(v, currentKey)) {

currentLink->left = insertR (currentLink->left, item);

} else {

currentLink->right = insertR (currentLink->right, item);

}

(currentLink->size)++;

return currentLink;

}

BST: SELECT

 How can we select the kth smallest element of a
search tree?

 Can be done quite easily if we store the size of the
subtree in each node (start with 0)

 Base case 1: if tree is empty tree

 search was unsuccessful

 Base case 2: if left subtree has k items

 return node item

 Recursive case 1: left subtree has m > k items

 continue search of kth item in left subtree

 Recursive case 2: left subtree has m < k items

 continue search of (k-m-1)th item in right subtree

SELECT KTH ITEM

 For a tree with N Nodes, indexes are 0..N-1

IMPLEMENTATION : BINARY SEARCH TREES

 Implementation of select

static Item selectR (link currentTree, int k) {

if (currentTree == emptyTree) {

return NULLitem;

}

if (currentTree->left->size == k) {

return (currentTree->item);

}

if (currentTree->left->size > k) {

return (selectR (currentTree->left, k));

}

return (selectR (currentTree->right, k - 1 - currentTree->left->size));

}

Item STselect (ST s,int k) {

return (selectR (s->root, k));

}

PERFORMANCE CHARACTERISTICS OF BSTS

 We already discussed the performance of binary

search trees:

 on average,

 O(log n) steps to search, insert in a tree with n items

 worst case (degenerate tree)

 O(n) steps

SYMBOL TABLES AS INDEXES

 Scenario:

 large set of items;

 need efficient access via key

 but also need sequential access to items

 items might be stored in very large array or file

 Solution:

 leave items in place

 use symbol table holding (key,ref) pairs

 Commonly used as an access mechanism in

databases.

