
HASH TABLES



HASHING

 Key indexed arrays had perfect search performance 

O(1)

 But required a dense range of index values

 Otherwise memory is wasted

 Hashing allows us to approximate this performance 

but

 Allows arbitrary types of keys

 Map(hash) keys into compact range of index values

 Items are stored in an array accessed by this index value

 Allows us to approach the ideal of 

title[hashfunction(“COMP1927”)] = “Computing 2”;



HASHING

 A hash table implementation consists of two main 

parts:

(1) A hash function to map each key to an index in the hash 

table (array of size N). 

 Key->[0..N-1] 

(2) A collision resolution so that

 if hash table at the calculated index is already occupied with an 

item with a different key, an alternative slot can be found

 Collisions are inevitable when dom(Key) > N



HASH FUNCTIONS

 Requirements:

 if the table has TableSize entries, we need to hash keys to 
[0..TableSize-1]

 the hash function should be cheap to compute

 the hash function should ideally map the keys evenly to the 

index values - that is, every index should be generated with 

approximately the same probability

 this is easy if the keys have a random distribution, but requires 

some thought otherwise

 Simple method to hash keys: modular hash function

• compute i%TableSize

• choose TableSize to be prime



HASHING STRING KEYS

 Consider this potential hash function:

 we can turn a string into an Integer value:

int hash (char *v, int TableSize) {

int h = 0, i = 0;

while (v[i] != ‘\0’) {

h = h + v[i];

i++;

}

return h % TableSize;

}

 What is wrong with this function?

 How can it be improved?



HASHING STRING KEYS

• A better hash function:

int hash (char *v, int TableSize) {

int h = 0, i = 0;

int a = 127; //prime number 

while (v[i] != ‘\0’) {

h = (a*h + v[i]) % TableSize;

i++;

}

return h;

}



HASHING STRING KEYS

 Universal hash function for string keys:

 Uses all of value in hash, with suitable randomization

int hashU (char *v, int TableSize) {

int h = 0, i = 0;

int a = 31415, b = 27183;

while (v[i] != ‘\0’) {

h = (a*h + v[i]) % TableSize;

a = a*b% (TableSize-1);

i++;

}

return h;

}



REAL HASH FUNCTION

//from PostgreSQL DBMS

hash_any(unsigned char *k, register int keylen, int N) { 

register uint32 a, b, c, len; 

// set up internal state 

len = keylen; 

a = b = 0x9e3779b9; c = 3923095; 

// handle most of the key, in 12-char chunks 

while (len >= 12) { 

a += (k[0] + (k[1] << 8) + (k[2] << 16) + (k[3] << 24)); 

b += (k[4] + (k[5] << 8) + (k[6] << 16) + (k[7] << 24)); 

c += (k[8] + (k[9] << 8) + (k[10] << 16) + (k[11] << 24)); 

mix(a, b, c); 

k += 12; 

len -= 12; 

} 

// collect any data from remaining bytes into a,b,c

mix(a, b, c); return c % N; }



COLLISION RESOLUTION: SEPARATE

CHAINING

 What do we do if two entries have the same array 

index?

 maintain a list of entries per array index (separate 

chaining)

 use the next entry in the hash table (linear probing)

 use a key dependent increment for probing (double 

hashing)



SEPARATE CHAINING

 Can be viewed as a generalisation of sequential search

 Reduces number of comparisons by a factor of TableSize

 See lecture code for implementation

0

1

2

3

4

5

6

7

8

9

“hi” “ci” “li”

“ra”

“as” “is”

“fr”



SEPARATE CHAINING

 Cost Analysis:

 N array entries(slots), M stored items

 Best case: all lists are the same length

 M/N

 Worst case: one list of size M all the rest are size 0

 If good hash and M<= N, cost is 1

 If good hash and M> N, cost is M/N

 Ratio of items/slots is called load α = M/N



LINEAR PROBING

 Resolve collision in the primary table:

 if the table is not close to be full, there are many empty 

slots, even if we have a collision

 in case of a collision, simply use the next available slot

 this is an instance of open-addressing hashing



LINEAR PROBING: DELETION

Need to delete and reinsert all values after the index

we delete at, till we reach a slot with no value



LINEAR PROBING

 Cost Analysis:

 Cost to reach location where item is mapped is O(1), 

but then we may have to scan along to find it in the 

worst case this could be O(M)

 affected by the load factor M/N

 Problems

 When the table is starting to fill up, we can get clusters

 Inserting an item with one hash value can increase 

access time for items with other hash values

 Linear probing can become slow for near full hash 

tables



DOUBLE HASHING

 To avoid clustering, we use a second hash function to determine 
a fixed increment to check for empty slots in the table:

index determined by

first hash function

increment determined by

second hash function



DOUBLE HASHING

 Requirements for second hashing function:

 must never evaluate to zero

 increment should be relatively prime to the hash table 

size 

 This ensures all elements are visited

 To generate relatively prime set table size to prime 

e.g. N=127 

 hash2() in range [1..N1] where N1 < 127 and prime 

 Can be significantly faster than linear probing 

especially if the table is heavily loaded.



DYNAMIC HASH TABLES

 All the hash table methods we looked at so far have 

the same problem 

 once the hash table gets full, the search and insertion 

times increases due to collisions

 Solution:

 grow table dynamically

 this involves copying of table content, amortised over 

time by reduction of collisions



EVALUATION

 Choice of the hash function can significantly effect 

the performance of the implementation, in particular 

when the hash table starts to fill up

 Choice of collision methods influences performance 

as well

 linear probing (fastest, given table is sufficiently big)

 double hashing (makes most efficient use of memory, 

req. 2nd hash function, fastest if table load is higher)

 separate chaining (easiest to implement. table load can 

be more than 1 but performance degrades) 


