
Priority Queues and Heaps 
Computing 2 COMP1927 17x1 

    



PRIORITY 

Some applications of queues require items 

processed in order of "key"  or priority rather than 

in order of entry (FIFO)  

 

Priority Queues (PQueues or PQs) provide this via:  

 Insert item with a given priority into PQ  

 Remove item with highest priority key  

 Highest priority key may be one with smallest or 

largest value depending on the  application 

 Plus generic ADT operations:  

  new, drop, empty, … 



PRIORITY QUEUE INTERFACE 

typedef struct priQ * PriQ; 

//We assume we have a more complex Item type that has 

//a key and a value, where the key is the priority and the 

//value is the data being stored 

 

// Core operations  

PriQ initPriQ(void);  

void insert(PriQ q, Item i);  

//retrieve and delete Item with highest priority 

Item delete(PriQ q); 

 

// Useful operations  

int sizePriQ(PriQ q);  

void changePriority(PriQ q, Key k, Item i); 

void deleteKey(PriQ q, Key k);  

int maxSize(PriQ q); 



COMPARISON OF PRIORITY QUEUE 

IMPLEMENTATIONS 

Can we implement BOTH  operations efficiently? 

 Yes with a heap  

 O(log N) for insert and delete 

 

 

Data Structure Insert Delete IsEmpty 

Sorted Array O(N) O(1) O(1) 

Unsorted Array O(1) O(N) O(1) 

Sorted List O(N) O(1) O(1) 

Unsorted List O(1) O(N) O(1) 

Heap    O(logN) O(logN) O(1) 



HEAP ORDER PROPERTY  

 Heaps can be viewed as trees with top-to-bottom 

heap ordering  

 for all keys both subtrees are ≤ root  

property applies to all nodes in tree (i.e. root 

contains largest value in that subtree)  

 



COMPLETE TREE PROPERTY 

Heaps are "complete trees“ 

 every level is filled in before adding a node to the next 

level 

 the nodes in a given level are filled in from left to 

right, with no breaks.  



HEAP IMPLEMENTATIONS 

BSTs are typically implemented as linked data 

structures 

 

Heaps CAN be implemented as linked data 

structures 

 Heaps are TYPICALLY implemented via arrays. 

 The property of being complete makes array 

implementations suitable  



ARRAY BASED HEAP IMPLEMENTATION 

 Simple index calculations allow navigation 

through the tree:  

 left child of node at index i is located at 2i  

 right child of node at index i is located at 2i+1  

 parent of node at index i is located at i/2  



ARRAY BASED HEAP IMPLEMENTATION 

typedef struct HeapImp {  

        Item *items; // array of Items  

        int nitems;   // #items in array   

}  

HeapImp;  

 

typedef HeapImp *Heap; 

Heap data structure: 

 



HEAP INSERTION : BOTTOM-UP HEAPIFY 

 Insertion is a two-step process  

1. add new element at bottom-most, rightmost position 

2. reorganise values along path to root to restore heap 

property 



HEAP INSERTION FIX-UP CODE 

 

// force value at a[k] into correct position  

void fixUp(Item a[], int k) {  

    while (k > 1 && less(a[k/2],a[k])) {  

        swap(a, k, k/2);  

        k = k/2; // integer division  

    }  

}  



HEAP INSERTION 



DELETION WITH HEAPS – TOP-DOWN HEAPIFY 

 Deletion is a three-step process 

 To delete node at position, k 

1. replace node[k] by bottom-most, rightmost value  

2. remove bottom-most, rightmost value  

3. restore heap by reorganizing values by moving down the 

heap, exchanging node[k] with the larger of the node’s 

children, stopping when node[k] is not smaller than either 

child or bottom is reached.  



HEAP DELETION FIX-DOWN CODE 

void fixDown(Item a[], int k) { 

   int done = 0; 

   while (2*k <= N && !done) {  

       int j = 2*k; //choose larger of two children  

       if (j < N && less(a[j], a[j+1])){ 

           j++; 

       }  

       if (!less(a[k], a[j])){ 

           done =1; 

       }else{  

           swap(a, k, j);  

           k = j; 

       }  

   }  

}  



EXERCISE: 

 Show the construction of the max heap produced 

by inserting  

     H E A P S F U N 

 Show the heap after an item is deleted.  

 Show the heap after another item is deleted. 



HEAPS AS PRIORITY QUEUES 

 Heaps are typically used for implementing Priority 

Queues 

 - priorities determined by order on keys 

 - new items added initially at lower-most, right-

most leaf 

 - then new item "drifts up" to appropriate level in 

tree 

 - items are always deleted by removing root (top 

priority) 

 Since heaps are dense trees, depth = floor(log2N)+1 

 Insertion cost = O(logN),   Deletion cost = O(logN) 

 


