Graphs

Computing 2 COMP1927 17x1
Sedgewick Part 5: Chapter 17
What are graphs

Many applications require

- a collection of **items** (i.e. a set)
- and **relationships/connections** between items
- and these relationships lead to natural questions – is there a way to reach from one item to another using these connections?, how many other items can be reached from a given item?

Examples include:

- maps: items are cities, connections are roads
- web: items are pages, connections are hyperlinks

Collection types we've seen so far

- lists...linear sequence of items (stack, queue)
- trees ... branched hierarchy of items

Graphs are more general ... allow arbitrary connections.
Definition of a graph

- A graph $G = (V, E)$
 - V is a set of vertices
 - E is a set of edges (subset of $V \times V$)
- Example:

 $$
 V = \{v1, v2, v3, v4\} \\
 E = \{e1, e2, e3, e4, e5\}
 $$
<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Telephones, Computers</td>
<td>Cables</td>
</tr>
<tr>
<td>Games</td>
<td>Board positions</td>
<td>Legal moves</td>
</tr>
<tr>
<td>Social networks</td>
<td>People</td>
<td>Friendships</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Tasks</td>
<td>Precedence Constraints</td>
</tr>
<tr>
<td>Circuits</td>
<td>Gates, Registers, Processors</td>
<td>Wires</td>
</tr>
<tr>
<td>Transport</td>
<td>Intersections/airports</td>
<td>Roads, flights</td>
</tr>
</tbody>
</table>
A REAL EXAMPLE:
AUSTRALIAN ROAD DISTANCES

<table>
<thead>
<tr>
<th>Dist</th>
<th>Adel</th>
<th>Bris</th>
<th>Can</th>
<th>Dar</th>
<th>Melb</th>
<th>Perth</th>
<th>Syd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adel</td>
<td>-</td>
<td>2055</td>
<td>1390</td>
<td>3051</td>
<td>732</td>
<td>2716</td>
<td>1605</td>
</tr>
<tr>
<td>Bris</td>
<td>2055</td>
<td>-</td>
<td>1291</td>
<td>3429</td>
<td>1671</td>
<td>4771</td>
<td>982</td>
</tr>
<tr>
<td>Can</td>
<td>1390</td>
<td>1291</td>
<td>-</td>
<td>4441</td>
<td>658</td>
<td>4106</td>
<td>309</td>
</tr>
<tr>
<td>Dar</td>
<td>3051</td>
<td>3429</td>
<td>4441</td>
<td>-</td>
<td>3783</td>
<td>4049</td>
<td>4411</td>
</tr>
<tr>
<td>Melb</td>
<td>732</td>
<td>1671</td>
<td>658</td>
<td>3783</td>
<td>-</td>
<td>3448</td>
<td>873</td>
</tr>
<tr>
<td>Perth</td>
<td>2716</td>
<td>4771</td>
<td>4106</td>
<td>4049</td>
<td>3448</td>
<td>-</td>
<td>3972</td>
</tr>
<tr>
<td>Syd</td>
<td>1605</td>
<td>982</td>
<td>309</td>
<td>4411</td>
<td>873</td>
<td>3972</td>
<td>-</td>
</tr>
</tbody>
</table>
A REAL GRAPH EXAMPLE

Alternative representation of Australian roads:
Graphs

Questions we might ask about a graph

- is there a way to get from item A to item B?
- what is the best way to get from A to B?
- which vertices are connected?

Graph algorithms are in general significantly more difficult than list or tree processing

- no implicit order of the items
- graphs can contain cycles
- concrete representation is less obvious
- complexity of algorithms depend connection complexity
Graph Types

Depending on the application, graphs can have different properties:

- Undirected
- Directed
- Multigraph
- Weighted

At this point, we will only consider simple graphs which are characterised by:

- A set of vertices, and
- A set of undirected edges that connect pairs of vertices
 - No self loops
 - No parallel edges
PROPERTIES OF GRAPHS

Terminology: $|V|$ and $|E|$ normally written as V and E

- a graph with V vertices has at most $V(V-1)/2$ edges

The ratio $V:E$ has at most $V(V-1)/2$ edges

- if E is closer to $V^2/2$, the graph is dense
- If E is closer to V, the graph is sparse

Knowing whether a graph is sparse or dense is important

- may affect choice of data structures to represent graph
- may affect choice of algorithms to process graph
Describing Graphs

Defining graphs

- V need to be identified (e.g. number 1..V)
- E need to be drawn or enumerated

E.g.: In our 7 vertex graph:

- V (number of vertices): 7
- E (number of edges): 11
- Maximum number of edges: $7*(7-1)/2 = 21$

E.g. four representations of the same graph

(a) (b) (c) (d)
Defining Graphs

- need some way of identifying vertices and their connections
- Below are 4 representations of the same graph

(a) ![Graph (a)](image)
(b) ![Graph (b)](image)
(c) ![Graph (c)](image)
(d) ![Graph (d)](image)

Numbers in each graph indicate the connections between vertices.
Graph Terminology

For an edge e, that connects vertices v and w

- v and w are adjacent
- e is incident on both v and w

Degree of a vertex $v = \text{number of edges incident on } v$
Graphs: Terminology

- The **degree** of a vertex is the number of edges from the vertex.
- A **complete graph** is a graph where every vertex is connected to all the other vertices.
 - \(E = \frac{V(V-1)}{2} \)
 - The degree of every vertex is \(V-1 \).
Graph Terminology

Subgraph: a subset of vertices with their associated edges

![Diagram](image.png)
Graph Terminology

Bipartite graph: a graph whose vertices can be divided into two sets such that all edges connect a vertex in one set with a vertex in the other set. F
GRAPH TERMINOLOGY: PATHS

Path: a sequence of vertices where each successive vertex is adjacent (connected) to its predecessor - e.g., 1, 0, 6, 5

Simple path - the path doesn’t have any repeating vertices

Cycle – A path where last vertex in path is same as first vertex in path

Path: 1–2, 2–3, 3–4
Cycle: 1–2, 2–3, 3–4, 4–1
GRAPH TERMINOLOGY

- A graph is a connected graph, if there is a path from every vertex to every other vertex in the graph.
A graph that is not connected consists of a set of connected components, which are maximally connected subgraphs.
Graph Terminology

- A graph is a tree if there is exactly one path between each pair of vertices.

- A **spanning tree** of a connected graph is a sub-graph (a sub set of graph G) that contains all of the graph’s vertices and is a single tree.

- A **spanning forest** of a graph is a sub-graph that contains all its vertices and is a forest (a set of trees).
Graph Terminology

- A **spanning forest** of a graph is a sub-graph that contains all its vertices and is a set of trees
CLIQUES

- Clique: complete subgraph
 - Clique containing vertices \{A, G, H, J, K, M\}
 - Another clique containing vertices \{D, E, F, L\}
Consider the following single graph:

This graph has 25 vertices, 28 edges and 4 connected components.
Other Types of Graphs

- **Directed graph (di-graph):** each edge has an associated direction (e.g. hyperlinks)
 - a digraph with V vertices can have at most V^2 edges
 - can have self loops
 - $\text{Edge}(u,v)! = \text{edge}(v,u)$
- a digraph is a tree if there is one vertex which is connected to all other vertices, and there is at most one path between any two vertices
- edges in directed graph are known as *directed edges*
- first vertex in a diagraph is the *source*; the second vertex is the *destination* (directed edge points from source to destination)
- **indegree** (number of edges where it is the destination)
- **outdegree** (number of edges where it is the source)
Undirected vs Directed Graphs

Undirected graph

Directed graph
Other types of graphs

- **Weighted graph**
 - each edge has an associated value *(weight)*
 - e.g. road map (weights on edges are distances between cities)

- **Multi-graph**
 - allow *multiple edges* (also called parallel edges) between two vertices
 - e.g. function call graph (f() calls g() in several places)
 - eg. Transport – may be able to get to new location by bus or train or ferry etc...
...Graph Terminology

- Hamilton path
 - A simple path that connects two vertices that visits every vertex in the graph exactly once
 - If the path is from a vertex back to itself it is called a hamilton cycle
Exercise:
Does this have a Hamilton path?
Graph Terminology

- **Euler path**
 - A path that connects two given vertices using each edge in the path exactly once.
 - If the path is from a vertex back to itself, it is an Euler tour.

[Diagram of a graph with labeled vertices A, B, C, D, and E, showing Eulerian paths with arrows indicating the direction of travel.]
Exercise: Does this have an Euler path?

- A graph has an Euler tour if and only if it is connected and all vertices are of even degree.
- A graph has an Euler path if and only if it is connected and exactly 2 vertices are of odd degree.
An Euler Path/Circuit

- An Euler path starts and ends at different vertices.
- An Euler circuit starts and ends at the same vertex.
Graph ADT

- **Data:**
 - set of edges,
 - set of vertices

- **Operations:**
 - building: create graph, create edge, add edge
 - deleting: remove edge, drop whole graph
 - scanning: get edges, copy, show

- **Notes:** In our graphs
 - set of vertices is fixed when graph initialised
 - we treat vertices as ints, but could be Items
Adjacency matrix representation

- Edges represented by a VxV matrix

Undirected graph

```
A  | 0  | 1  | 2  | 3  
---|----|----|----|----
0  | 0  | 1  | 0  | 1  
1  | 1  | 0  | 0  | 1  
2  | 0  | 0  | 0  | 1  
3  | 1  | 1  | 1  | 0  
```

Directed graph

```
A  | 0  | 1  | 2  | 3  
---|----|----|----|----
0  | 0  | 0  | 0  | 1  
1  | 1  | 0  | 0  | 1  
2  | 0  | 0  | 0  | 0  
3  | 0  | 0  | 1  | 0  
```
ADT Interface For Graphs

- Vertices and Edges

```c
typedef int Vertex;

// edge representation
typedef struct edge {
    Vertex v;
    Vertex w;
} Edge;

// edge construction
Edge mkEdge (Vertex v, Vertex w);
```
ADT INTERFACE OR GRAPHS

Graph basics:

// graph handle
typedef struct GraphRep *Graph;

// create a new graph
Graph graphInit (int noOfVertices);

// validity check
int validV (Graph g, Vertex v);
Adjacency Matrix Implementation

typedef struct GraphRep {
 int nV; // #vertices
 int nE; // #edges
 int **edges; // matrix of booleans
} GraphRep;

Undirected graph
ADT Interface or Graphs

Implementation of Graph Initialisation:

//Initialise a new graph
Graph newGraph(int nV) {
 int i, j;

 assert(nV >= 0);
 Graph g = malloc(sizeof(struct GraphRep));
 assert(g != NULL);

 g->edges = malloc(nV * sizeof(int *));
 for(i=0; i < nV; i++){
 g->edges[i] = malloc(nV * sizeof(int));
 for(j=0; j < nV; j++){
 g->edges[i][j] = 0;
 }
 }

 g->nV = nV;
 g->nE = 0;
 return g;
}
ADT INTERFACE OR GRAPHS

- **Graph inspection and manipulation:**

  ```c
  void insertEdge (Graph g, Edge e);
  void removeEdge(Graph g, Edge e);
  Edge * edges (Graph g, int * nE);
  int isAdjacent(Graph g, Vertex v, Vertex w);
  int numV(Graph g);
  int numE(Graph g);
  ```

- **Whole graph operations:**

  ```c
  Graph GRAPHcopy (Graph g);
  void GRAPHdestroy (Graph g);
  ```
Exercise: Implement the following function

//returns the adjacent vertices of a given vertex and sets *nV to the number of adjacent vertices returned.
//O(V)

```
Vertex * adjacentVertices(Graph g, Vertex v, int *nV);
```

Usage:

```
Graph g; Vertex v; int n;
...
Vertex *ns = adjacentVertices(g, v, &n);
```

```
Edge * edges (Graph g, int * nE);
Usage:
```
Adjacency Matrix representation

- **Advantages**
 - easily implemented in C as 2-dimensional array
 - can represent graphs, digraphs and weighted graphs
 - graphs: symmetric boolean matrix
 - digraphs: non-symmetric boolean matrix
 - weighted: non-symmetric matrix of weight values

- **Disadvantages:**
 - if few edges ⇒ sparse, memory-inefficient
Cost of operations on adjacency matrix

- Cost of operations:
 - initialisation: $O(V^2)$ (initialise $V \times V$ matrix)
 - insert edge: $O(1)$ (set two cells in matrix)
 - delete edge: $O(1)$ (unset two cells in matrix)

- Exercise: Find the cost of the following functions
 - isAdjacent();
 - adjacentVertices();
 - edges();
Adjacency Matrix Storage Optimisation

- Storage cost: V int ptrs + V^2 ints
 - If the graph is sparse, most storage is wasted.
- A storage optimisation:
 - If undirected, store only top-right part of matrix.
 - New storage cost: $V - 1$ int ptrs + $V(V+1)/2$ ints (but still $O(V^2)$)
 - Requires us to always use edges (v,w) such that $v < w$.

Exercise:
- How does the implementation of graphInit() change for the optimised solution?
Exercise: Implement the following function

//return the edges in normalised/canonical form (e.v < e.w), so that each edge appears exactly once in the result array

```
Edge * edges (Graph g, int * nE);
```

Usage:
```
Graph g; int n;
...
Edge *es = edges(g, &n);
```
Adjacency List Representation

- For each vertex, store linked list of adjacent vertices:

 Undirected graph
 - A[0] = <1, 3>
 - A[1] = <0, 3>
 - A[3] = <0, 1, 2>

 ![Undirected graph diagram]

 Directed graph
 - A[0] = <3>
 - A[1] = <0, 3>

 ![Directed graph diagram]
Adjacency List Representation

- **Advantages**
 - relatively easy to implement in C
 - can represent graphs and digraphs
 - memory efficient if E/V relatively small

- **Disadvantages:**
 - one graph has many possible representations (unless lists are ordered by same criterion e.g. ascending)
Adjacency List Implementation

typedef struct vNode *VList;
struct vNode { Vertex v; VList next; };
typedef struct GraphRep {
 int nV; // #vertices
 int nE; // #edges
 VList *edges; // array of lists
} GraphRep;

Undirected graph
Adjacency List Representation

Creating a new graph

```c
Graph newGraph(int nV) {
    int i;
    Graph g = malloc(sizeof(struct GraphRep));
    g->edges = malloc(nV * sizeof(VList));
    for(i=0; i<nV; i++){
        g->edges[i] = NULL;
    }
    g->nV = nV;
    g->nE = 0;
    return g;
}
```
Costs of Operations on Adjacency Lists

- Cost of operations:
 - initialisation: $O(V)$ (initialise V lists)
 - insert edge: $O(1)$ (insert one vertex into list)
 - delete edge: $O(V)$ (need to find vertex in list)

- If vertex lists are sorted insert requires search of list $\Rightarrow O(V)$

- If we do not want to allow parallel edges it is $O(V)$

- delete always requires a search, regardless of list order
Comparison of Different Graph Representations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adjacency Matrix</th>
<th>Adjacency List</th>
</tr>
</thead>
<tbody>
<tr>
<td>space</td>
<td>V^2</td>
<td>$V + E$</td>
</tr>
<tr>
<td>initialise empty</td>
<td>V^2</td>
<td>V</td>
</tr>
<tr>
<td>copy</td>
<td>V^2</td>
<td>E</td>
</tr>
<tr>
<td>destroy</td>
<td>V</td>
<td>E</td>
</tr>
<tr>
<td>insert edge</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>find/remove edge</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>is v isolated?</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>isAdjacent</td>
<td>1</td>
<td>V</td>
</tr>
</tbody>
</table>