
Graphs
Computing 2 COMP1927 17x1

Sedgewick Part 5: Chapter 17

WHAT ARE GRAPHS

Many applications require

 a collection of items (i.e. a set)

 and relationships/connections between items

 and these relationships lead to natural questions – is there a way

to reach from one item to another using these connections ?, how

many other items can be reached from a given item?

Examples include:

 maps: items are cities, connections are roads

 web: items are pages, connections are hyperlinks

Collection types we've seen so far

 lists…linear sequence of items (stack, queue)

 trees ... branched hierarchy of items

Graphs are more general ... allow arbitrary connections.

DEFINITION OF A GRAPH

 A graph G = (V,E)

 V is a set of vertices

 E is a set of edges (subset of V×V)

 Example:

OTHER GRAPH APPLICATION EXAMPLES

Graph Vertices Edges

Communication Telephones,

Computers

Cables

Games Board positions Legal moves

Social networks People Friendships

Scheduling Tasks Precedence

Constraints

Circuits Gates, Registers,

Processors

Wires

Transport Intersections/

airports

Roads, flights

A REAL EXAMPLE:

 AUSTRALIAN ROAD DISTANCES

Dist Adel Bris Can Dar Melb Perth Syd

Adel - 2055 1390 3051 732 2716 1605

Bris 2055 - 1291 3429 1671 4771 982

Can 1390 1291 - 4441 658 4106 309

Dar 3051 3429 4441 - 3783 4049 4411

Melb 732 1671 658 3783 - 3448 873

Perth 2716 4771 4106 4049 3448 - 3972

Syd 1605 982 309 4411 873 3972 -

A REAL GRAPH EXAMPLE

 Alternative representation of Australian roads:

GRAPHS

Questions we might ask about a graph

 is there a way to get from item A to item B?

 what is the best way to get from A to B?

 which vertices are connected?

Graph algorithms are in general significantly more difficult

than list or tree processing

 no implicit order of the items

 graphs can contain cycles

 concrete representation is less obvious

 complexity of algorithms depend connection complexity

GRAPH TYPES

At this point, we will only consider simple graphs

which are characterised by:

 a set of vertices, and

 a set of undirected edges that connect pairs of vertices

 no self loops

 no parallel edges

Depending on the application, graphs can have different properties:

undirected directed multigraph weighted

PROPERTIES OF GRAPHS

Terminology: |V| and |E| normally written as V and E

 a graph with V vertices has at most V(V-1)/2 edges

The ratio V:E has at most V(V-1)/2 edges

 if E is closer to V2/2, the graph is dense

 If E is closer to V, the graph is sparse

Knowing whether a graph is sparse or dense is important

 may affect choice of data structures to represent graph

 may affect choice of algorithms to process graph

DESCRIBING GRAPHS

Defining graphs

 V need to be identified (e.g. number 1..V)

 E need to be drawn or enumerated

E.g.: In our 7 vertex graph:

 V (number of vertices): 7

 E (number of edges): 11

 Maximum number of edges : 7*(7-1)/2 = 21

E.g. four representations of the same graph

0 1

2 3

5

4

6

DEFINING GRAPHS

 need some way of identifying vertices and their

connections

 Below are 4 representations of the same graph

GRAPH TERMINOLOGY

For an edge e, that connects vertices v and w

 v and w are adjacent

 e is incident on both v and w

Degree of a vertex v = number of edges incident on v

0 1

2 3

5 6

GRAPHS: TERMINOLOGY

 The degree of a vertex is the number of edges

from the vertex

 A complete graph is a graph where every vertex

is connected to all the other vertices

 E = V(V-1)/2

 The degree of every vertex is V-1

GRAPH TERMINOLOGY

0 1

2 3

5

4

6

Subgraph: a subset of vertices with their associated edges

GRAPH TERMINOLOGY

Bipartite graph: a graph whose vertices can be divided into two

sets such that all edges connect a vertex in one set with a

vertex in the other set. F

GRAPH TERMINOLOGY: PATHS

Path: a sequence of vertices where each

successive vertex is adjacent (connected)

to its predecessor - e.g., 1,0,6,5

0 1

2 3

5

4

6

Simple path - the path doesn’t have any repeating vertices

Cycle – A path where last vertex in path is same as first vertex in path

GRAPH TERMINOLOGY

 A graph is a connected graph, if there is a path

from every vertex to every other vertex in the

graph

GRAPH TERMINOLOGY

 A graph that is not connected consists of a set of

connected components, which are maximally

connected subgraphs

GRAPH TERMINOLOGY
 A graph is a tree if there is exactly one path between

each pair of vertices

 A spanning tree of a connected graph is a sub-graph (a

sub set of graph G) that contains all of the graph’s

vertices and is a single tree

 A spanning forest of a graph is a sub-graph that contains

all its vertices and is a forest (a set of trees)

GRAPH TERMINOLOGY

 A spanning forest of a graph is a sub-graph that

contains all its vertices and is a set of trees

CLIQUES

 Clique: complete subgraph

 Clique containing vertices{A, G, H, J, K, M}

 Another clique containing vertics {D,E,F,L}

CLIQUES

 Consider the following single graph:

 This graph has 25 vertices, 28 edges and 4 connected

components

OTHER TYPES OF GRAPHS

 Directed graph (di-graph): each edge has an associated

direction (e.g. hyperlinks)

- a digraph with V vertices can have at most V2 edges

- can have self loops

- Edge(u.v)! = edge(v,u)

 a digraph is a tree if there is one vertex which is connected

to all other vertices, and there is at most one path between

any two vertices

 edges in directed graph are known as directed edges

 first vertex in a diagraph is the source; the second vertex is

the destination (directed edge points from source to

destination)

 indegree (number of edges where it is the destination)

 outdegree (number of edges where it is the source)

 Unless specified, we assume graphs are undirected in

this course.

UNDIRECTED VS DIRECTED GRAPHS

OTHER TYPES OF GRAPHS

 Weighted graph

 each edge has an associated value
(weight)

 e.g. road map (weights on edges are
distances between cities)

 Multi-graph

 allow multiple edges (also called parallel
edges) between two vertices

 e.g. function call graph (f() calls g() in
several places)

 eg. Transport – may be able to get to new
location by bus or train or ferry etc…

2
6

…GRAPH TERMINOLOGY

 Hamilton path

 A simple path that

connects two vertices

that visits every

vertex in the graph

exactly once

 If the path is from a

vertex back to itself

it is called a

hamilton cycle

EXERCISE:

DOES THIS HAVE A HAMILTON PATH?

2
8

…GRAPH TERMINOLOGY

 Euler path

 A path the connects

two given vertices

using each edge in

the path exactly

once.

 If the path is from a

vertex back to itself

it is an euler tour

B

A C

E D

2
9

EXERCISE:

DOES THIS HAVE AN EULER PATH?

 A graph has an Euler

tour if and only if it is

connected and all

vertices are of even

degree

 A graph has an Euler

path if and only if it is

connected and exactly 2

vertices are of odd

degree

A B

D C

AN EULER PATH/CIRCUIT

 An Euler path starts and ends at different vertices.

 An Euler circuit starts and ends at the same vertex.

GRAPH ADT

 Data:

 set of edges,

 set of vertices

 Operations:

 building: create graph, create edge, add edge

 deleting: remove edge, drop whole graph

 scanning: get edges, copy, show

 Notes: In our graphs

 set of vertices is fixed when graph initialised

 we treat vertices as ints, but could be Items

ADJACENCY MATRIX REPRESENTATION

 Edges represented by a VxV matrix

ADT INTERFACE FOR GRAPHS

 Vertices and Edges

typedef int Vertex;

// edge representation

typedef struct edge {

 Vertex v;

 Vertex w;

} Edge;

// edge construction

Edge mkEdge (Vertex v, Vertex w);

ADT INTERFACE OR GRAPHS

 Graph basics:

// graph handle

typedef struct GraphRep *Graph;

// create a new graph

Graph graphInit (int noOfVertices);

//validity check

int validV(Graph g,Vertex v);

ADJACENCY MATRIX IMPLEMENTATION

typedef struct GraphRep {

 int nV; // #vertices

 int nE; // #edges

 int **edges; // matrix of booleans

} GraphRep;

ADT INTERFACE OR GRAPHS

 Implementation of Graph Initialisation:
//Initialise a new graph

Graph newGraph(int nV) {

 int i,j;

 assert(nV >= 0);

 Graph g = malloc(sizeof(struct GraphRep));

 assert(g != NULL);

 g->edges = malloc(nV *sizeof(int *));

 for(i=0; i < nV; i++){

 g->edges[i] = malloc(nV * sizeof(int));

 for(j=0; j < nV; j++){

 g->edges[i][j] = 0;

 }

 }

 g->nV = nV;

 g->nE = 0;

 return g;

}

ADT INTERFACE OR GRAPHS

 Graph inspection and manipulation:

void insertEdge (Graph g, Edge e);

void removeEdge(Graph g, Edge e);

Edge * edges (Graph g, int * nE);

int isAdjacent(Graph g, Vertex v, Vertex w);

int numV(Graph g);

int numE(Graph g);

Graph GRAPHcopy (Graph g);

void GRAPHdestroy (Graph g);

 Whole graph operations:

ADT INTERFACE OR GRAPHS

 Exercise: Implement the following function

 Vertex * adjacentVertices(Graph g, Vertex v, int *nV);

Edge * edges (Graph g, int * nE);

Usage:

//returns the adjacent vertices of a given vertex and sets *nV

to the number of adjacent vertices returned.

//O(V)

 Graph g; Vertex v; int n;

 …

 Vertex *ns = adjacentVertices(g, v, &n);

Usage:

ADJACENCY MATRIX REPRESENTATION

 Advantages

 easily implemented in C as 2-dimensional array

 can represent graphs, digraphs and weighted graphs

graphs: symmetric boolean matrix

digraphs: non-symmetric boolean matrix

weighted: non-symmetric matrix of weight values

 Disadvantages:

 if few edges ⇒ sparse, memory-inefficient

COST OF OPERATIONS ON ADJACENCY MATRIX

 Cost of operations:

 initialisation: O(V2) (initialise V×V matrix)

 insert edge: O(1) (set two cells in matrix)

 delete edge: O(1) (unset two cells in matrix)

 isAdjacent();

 adjacentVertices ();

 edges();

 Exercise: Find the cost of the following functions

ADJACENCY MATRIX STORAGE OPTIMISATION

 Storage cost: V int ptrs + V2 ints

 If the graph is sparse, most storage is wasted.

 A storage optimisation:

 If undirected, store only top-right part of matrix.

 New storage cost: V-1 int ptrs + V(V+1)/2 ints (but still

O(V2))

 Requires us to always use edges (v,w) such that v < w.

 Exercise:

 How does the implementation of graphInit() change

for the optimised solution?

ADT INTERFACE OR GRAPHS

 Exercise: Implement the following function

Edge * edges (Graph g, int * nE);

//return the edges in normalised/canonical form (e.v < e.w),

so that each edge appears exactly once in the result array

 Graph g; int n;

 …

 Edge *es = edges(g, &n);

Usage:

ADJACENCY LIST REPRESENTATION

 For each vertex, store linked list of adjacent

vertices:

ADJACENCY LIST REPRESENTATION

 Advantages

 relatively easy to implement in C

 can represent graphs and digraphs

 memory efficient if E/V relatively small

 Disadvantages:

 one graph has many possible representations

(unless lists are ordered by same criterion e.g.

ascending)

ADJACENCY LIST IMPLEMENTATION

typedef struct vNode *VList;

struct vNode { Vertex v; VList next; };

typedef struct GraphRep {

 int nV; // #vertices

 int nE; // #edges

 VList *edges; // array of lists

} GraphRep;

ADJACENCY LIST REPRESENTATION

Creating a new graph

 Graph newGraph(int nV) {

 int i;

 Graph g = malloc(sizeof(struct GraphRep));

 g->edges = malloc(nV* sizeof(VList));

 for(i=0; i<nV; i++){

 g->edges[i] = NULL;

 }

 g->nV = nV;

 g->nE = 0;

 return g;

}

COSTS OF OPERATIONS ON ADJACENCY LISTS

 Cost of operations:

 initialisation: O(V) (initialise V lists)

 insert edge: O(1) (insert one vertex into list)

 delete edge: O(V) (need to find vertex in list)

 If vertex lists are sorted insert requires search of

list ⇒ O(V)

 If we do not want to allow parallel edges it is

O(V)

 delete always requires a search, regardless of list

order

COMPARISON OF DIFFERENT GRAPH

REPRESENTATIONS

adjacency matrix adjacency list

space V2 V + E

initialise empty V2 V

copy V2 E

destroy V E

insert edge 1 V

find/remove edge 1 V

is v isolated? V 1

isAdjacent 1 V

