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WHAT ARE GRAPHS 

Many applications require 

 a collection of items (i.e. a set) 

 and relationships/connections between items  

 and these relationships lead to natural questions – is there a way 

to reach from one item to another using these connections ?, how 

many other items can be reached from a given item? 

Examples include: 

 maps: items are cities, connections are roads  

 web: items are pages, connections are hyperlinks 

Collection types we've seen so far 

 lists…linear sequence of items  (stack, queue) 

 trees ... branched hierarchy of items 

Graphs are more general ... allow arbitrary connections.  



DEFINITION OF A GRAPH 

 A graph G = (V,E)  

 V is a set of vertices  

 E is a set of edges   (subset of V×V)  

 Example:  

 



OTHER GRAPH APPLICATION EXAMPLES 

Graph Vertices Edges 

Communication Telephones, 

Computers 

Cables 

Games Board positions Legal moves 

Social networks People Friendships 

Scheduling Tasks Precedence 

Constraints 

Circuits Gates, Registers, 

Processors 

Wires 

Transport Intersections/ 

airports 

Roads, flights 



A REAL EXAMPLE:  

 AUSTRALIAN ROAD DISTANCES  

Dist Adel Bris Can Dar Melb Perth Syd 

Adel - 2055 1390 3051 732 2716 1605 

Bris 2055 - 1291 3429 1671 4771 982 

Can 1390 1291 - 4441 658 4106 309 

Dar 3051 3429 4441 - 3783 4049 4411 

Melb 732 1671 658 3783 - 3448 873 

Perth 2716 4771 4106 4049 3448 - 3972 

Syd 1605 982 309 4411 873 3972 - 



A REAL GRAPH EXAMPLE 

 Alternative representation of Australian roads: 

  

 



GRAPHS 

Questions we might ask about a graph 

  is there a way to get from item A to item B? 

  what is the best way to get from A to B? 

  which vertices are connected? 

Graph algorithms are in general significantly more difficult 

than list or tree processing 

 no implicit order of the items  

 graphs can contain cycles 

 concrete representation is less obvious 

 complexity of algorithms depend connection complexity 



GRAPH TYPES 

At this point, we will only consider simple graphs 

which are characterised  by: 

 a set of vertices, and 

 a set of undirected edges that connect pairs of vertices 

 no self loops 

 no parallel edges 

Depending on the application, graphs can have different properties: 

undirected directed multigraph weighted 



PROPERTIES OF GRAPHS 

Terminology: |V| and |E| normally written as V and E 

  a graph with V vertices has at most V(V-1)/2 edges 

 

The ratio V:E has at most V(V-1)/2 edges 

 if E is closer to V2/2, the graph is dense 

 If E is closer to V, the graph is sparse 

Knowing whether a graph is sparse or dense is important 

 may affect choice of data structures to represent graph 

 may affect choice of algorithms to process graph 



DESCRIBING GRAPHS 

Defining graphs 

  V need to be identified (e.g. number 1..V) 

 E need to be drawn or enumerated 

E.g.: In our 7 vertex graph: 

 V (number of vertices): 7 

 E (number of edges): 11 

 Maximum number of edges : 7*(7-1)/2 = 21 

E.g. four representations of the same graph 
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DEFINING GRAPHS 

 need some way of identifying vertices and their 

connections 

 Below are 4 representations of the same graph 



GRAPH TERMINOLOGY 

For an edge e, that connects vertices v and w 

 v and w are adjacent 

 e is incident on both v and w 

 

 

 

 

Degree of a vertex v = number of edges incident on v 
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GRAPHS: TERMINOLOGY 

 The degree of a vertex is the number of edges 

from the vertex 

 A complete graph is a graph where every vertex 

is connected to all the other vertices  

 E = V(V-1)/2 

 The degree of every vertex is V-1 



GRAPH TERMINOLOGY 

0 1 

2 3 

5 

4 

6 

Subgraph:  a subset of vertices with their associated edges 



GRAPH TERMINOLOGY 

Bipartite graph:  a graph whose vertices can be divided into two 

sets such that all edges connect a vertex in one set with a 

vertex in the other set. F  



GRAPH TERMINOLOGY: PATHS  

Path: a sequence of vertices where each 

successive vertex is adjacent (connected) 

to its predecessor  - e.g., 1,0,6,5 
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Simple path - the path doesn’t have any repeating vertices 

Cycle –  A path where last vertex in path is same as first vertex in path 



GRAPH TERMINOLOGY 

 A graph is a connected graph, if there is a path 

from every vertex to every other vertex in the 

graph 



GRAPH TERMINOLOGY 

 A graph that is not connected consists of a set of 

connected components, which are maximally 

connected subgraphs 



GRAPH TERMINOLOGY 
 A graph is a tree if there is exactly one path between 

each pair of vertices 

 A spanning tree of a connected graph is a sub-graph (a 

sub set of graph G) that contains all of the graph’s 

vertices and is a single tree 

 

 

 

 

 A spanning forest of a graph is a sub-graph that contains 

all its vertices and is a forest (a set of trees) 



GRAPH TERMINOLOGY 

 A spanning forest of a graph is a sub-graph that 

contains all its vertices and is a set of trees 



CLIQUES 

 Clique: complete subgraph 

 Clique containing  vertices{A, G, H, J, K, M} 

 Another clique containing vertics {D,E,F,L} 

 



CLIQUES 

 Consider the following single graph: 

 This graph has 25 vertices, 28 edges and 4 connected 

components 



OTHER TYPES OF GRAPHS 

 Directed graph (di-graph):  each edge has an associated 

direction   (e.g. hyperlinks) 

- a digraph with V vertices can have at most V2 edges 

- can have self loops  

- Edge(u.v)! = edge(v,u) 

 a digraph is a tree if there is one vertex which is connected 

to all other vertices, and there is at most one path  between 

any two vertices 

 edges in directed graph are known as directed edges 

 first vertex in a diagraph is the source; the second vertex is 

the destination (directed edge points from source to 

destination) 

 indegree  (number of edges where it is the destination) 

 outdegree (number of edges where it is the source) 

 

 Unless specified, we assume graphs are undirected in 

this course. 

 

 



UNDIRECTED VS DIRECTED GRAPHS 



OTHER TYPES OF GRAPHS 

 Weighted graph  

 each edge has an associated value 
(weight)  

 e.g. road map   (weights on edges are 
distances between cities)  

 

 Multi-graph  

 allow multiple edges (also called parallel 
edges) between two vertices  

 e.g. function call graph   (f() calls g() in 
several places)  

 eg. Transport – may be able to get to new 
location by bus or train or ferry etc… 
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…GRAPH TERMINOLOGY 

 Hamilton path 

 A simple path that 

connects two vertices 

that visits every 

vertex in the graph 

exactly once 

 

 If the path is from a 

vertex back to itself 

it is called a 

hamilton cycle 



EXERCISE:  

DOES THIS HAVE A HAMILTON PATH? 
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…GRAPH TERMINOLOGY 

 Euler path 

 A path the connects 

two given vertices 

using each edge in 

the path exactly 

once. 

 

 If the path is from a 

vertex back to itself 

it is an euler tour 

B 

A C 

E D 
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EXERCISE:  

DOES THIS HAVE AN EULER PATH? 

 A graph has an Euler 

tour if and only if it is 

connected and all 

vertices are of even 

degree 

 A graph has an Euler 

path if and only if it is 

connected and exactly 2 

vertices are of odd 

degree 

A B 

D C 



AN EULER PATH/CIRCUIT 

 An Euler path starts and ends at different vertices.  

 An Euler circuit starts and ends at the same vertex.  



GRAPH ADT 

 Data:  

 set of edges,  

 set of vertices  

 Operations:  

 building: create graph, create edge, add edge  

 deleting: remove edge, drop whole graph  

 scanning: get edges, copy, show  

 

 Notes: In our graphs  

 set of vertices is fixed when graph initialised  

 we treat vertices as ints, but could be Items  

 



ADJACENCY MATRIX REPRESENTATION 

 Edges represented by a VxV matrix 

 



ADT INTERFACE FOR GRAPHS 

 Vertices and Edges 

typedef int Vertex; 

 

// edge representation 

typedef struct edge { 

     Vertex v; 

     Vertex w; 

} Edge;   

 

// edge construction 

Edge mkEdge (Vertex v, Vertex w);  



ADT INTERFACE OR GRAPHS 

 Graph basics: 

// graph handle 

typedef struct GraphRep *Graph; 

 

// create a new graph 

Graph  graphInit (int noOfVertices); 

//validity check 

int validV(Graph g,Vertex v);  



ADJACENCY MATRIX IMPLEMENTATION 

typedef struct GraphRep {  

    int nV;      // #vertices  

    int nE;      // #edges  

    int **edges; // matrix of booleans 

} GraphRep; 

 



ADT INTERFACE OR GRAPHS 

 Implementation of Graph Initialisation: 
//Initialise a new graph 

Graph newGraph(int nV) {  

    int i,j; 

    

    assert(nV >= 0);  

    Graph g = malloc(sizeof(struct GraphRep)); 

    assert(g != NULL); 

     

    g->edges = malloc(nV *sizeof(int *)); 

    for(i=0; i < nV; i++){ 

        g->edges[i] = malloc(nV * sizeof(int)); 

        for(j=0; j < nV; j++){ 

            g->edges[i][j] = 0; 

        } 

    } 

    g->nV = nV; 

    g->nE = 0; 

    return g;  

} 



ADT INTERFACE OR GRAPHS 

 Graph inspection and manipulation: 

void  insertEdge (Graph g, Edge e); 

void  removeEdge(Graph g, Edge e); 

Edge *  edges (Graph g, int * nE); 

int isAdjacent(Graph g, Vertex v, Vertex w); 

int numV(Graph g); 

int numE(Graph g); 

Graph GRAPHcopy (Graph g); 

void  GRAPHdestroy (Graph g); 

 

 Whole graph operations: 



ADT INTERFACE OR GRAPHS 

 Exercise: Implement the following function 

 

    Vertex *  adjacentVertices(Graph g, Vertex v, int *nV); 

 

Edge *  edges (Graph g, int * nE); 

Usage:  

//returns the adjacent vertices of a given vertex and sets *nV 

to the number of adjacent vertices returned. 

//O(V) 

 

                 Graph g; Vertex v; int n;  

    … 

                 Vertex *ns = adjacentVertices(g, v, &n); 

Usage:  

 



ADJACENCY MATRIX REPRESENTATION 

 Advantages  

 easily implemented in C as 2-dimensional array  

 can represent graphs, digraphs and weighted graphs  

graphs: symmetric boolean matrix  

digraphs: non-symmetric boolean matrix  

weighted: non-symmetric matrix of weight values  

 Disadvantages:  

 if few edges ⇒ sparse, memory-inefficient  

 



COST OF OPERATIONS ON ADJACENCY MATRIX 

 Cost of operations:  

 initialisation: O(V2)   (initialise V×V matrix)  

 insert edge: O(1)   (set two cells in matrix)  

 delete edge: O(1)   (unset two cells in matrix)  

 

 isAdjacent( ); 

 adjacentVertices ( );  

 edges( ); 

 Exercise: Find the cost of the following functions 



ADJACENCY MATRIX STORAGE OPTIMISATION  

 Storage cost: V int ptrs + V2 ints   

 If the graph is sparse, most storage is wasted.  

 A storage optimisation:  

 If undirected, store only top-right part of matrix. 

 New storage cost: V-1 int ptrs + V(V+1)/2 ints   (but still 

O(V2))  

 Requires us to always use edges (v,w) such that v < w.  

 
 Exercise:   

 How does the implementation of graphInit( ) change 

for the optimised solution?  



ADT INTERFACE OR GRAPHS 

 Exercise: Implement the following function 

Edge *  edges (Graph g, int * nE); 

 

 

//return the edges in normalised/canonical form (e.v &lt; e.w), 

so that each edge appears exactly once in the result array 

                 Graph g; int n;  

    … 

                 Edge *es = edges(g, &n); 

 

Usage:  

 



ADJACENCY LIST REPRESENTATION 

 For each vertex, store linked list of adjacent 

vertices:  



ADJACENCY LIST REPRESENTATION 

 Advantages  

 relatively easy to implement in C  

 can represent graphs and digraphs  

 memory efficient if E/V relatively small  

 Disadvantages:  

 one graph has many possible representations  

(unless lists are ordered by same criterion e.g. 

ascending)  

 



ADJACENCY LIST IMPLEMENTATION 

typedef struct vNode *VList;  

struct vNode { Vertex v; VList next; }; 

typedef struct GraphRep {  

    int nV;       // #vertices  

    int nE;       // #edges  

    VList *edges; // array of lists 

} GraphRep; 

 



ADJACENCY LIST REPRESENTATION 

Creating a new graph 

    Graph newGraph(int nV) {  

    int i;  

    Graph g = malloc(sizeof(struct GraphRep)); 

    g->edges = malloc(nV* sizeof(VList)); 

    for(i=0; i<nV; i++){ 

        g->edges[i] = NULL; 

    } 

    g->nV = nV; 

    g->nE = 0; 

    return g;  

} 



COSTS OF OPERATIONS ON ADJACENCY LISTS 

 Cost of operations:  

 initialisation: O(V)   (initialise V lists)  

 insert edge: O(1)   (insert one vertex into list)  

 delete edge: O(V)   (need to find vertex in list)  

 If vertex lists are sorted insert requires search of 

list ⇒ O(V)  

 If we do not want to allow parallel edges it is 

O(V) 

 delete always requires a search, regardless of list 

order  

 



COMPARISON OF DIFFERENT GRAPH 

REPRESENTATIONS 

adjacency matrix adjacency list 

space V2 V + E 

initialise empty V2 V  

copy V2 E 

destroy V E 

insert edge 1 V 

find/remove edge 1  V 

is v isolated? V 1 

isAdjacent 1 V 


