
Elementary Sorting Algorithms

COMP1927 17x1

Sedgewick Chapter 6

The Problem of Sorting

• Why sort?

– makes searching easier

– useful for reading reports/lists/tables

• A variety of algorithms to solve this problem…

– Which is better?

– How can we compare them?

– How can we classify them?

Sorting on Linux

• The sort command sorts a file of text, understands fields in

line

– can sort alphabetically, numerically, reverse, random

• Use the sort command to sort data1:

• To learn more about sort, try sorting data 2 and data 3

5059413 Daisy 3762 15

3461045 Yan 3648 42

3474881 Sinan 8543 16

5061020 Yu 3970 3

Sorting

• For the time being ...

– sorting an array of ints (e.g. int a[N])

– order determined by natural order on ints

– implemented as sort(int a[], int lo, int hi)

• For the rest of the course and real world apps…

– Sorting an array of Items (e.g., Item a[N]

– each Item has a key value

– using an ordering relation on that key – order on keys

determines order on the Items

– implemented as sort (Item a[], int lo, int hi)

Comparing Sorting Algorithms

• Core operations for sorting: compare, swap and move

• In analyzing sorting algorithms:

– Worst case time complexity

– N = number of items = hi –lo + 1

– C = number of comparisons between items

– S = number of times items are swapped

– M = number of times items are moved

Aim to minimise C, S and M (but often M = 0)

• Cases to consider for initial ordering of items. What is the worst

case for the given algorithm?

– random order? sorted order? reverse sorted order?

– sometimes specific non-random, non-ordered permutations?

Properties of Sorting Algorithms

Efficiency: O(n2), O(n log n), O(n)

Stability:

- Stable sorting methods preserve the relative order of items with

duplicate keys i.e. two ojects with equal keys appear in the same order

in the sorted output as they appear in the input unsorted array

- Non-stable sorting methods may change the relative order of items

with duplicate keys

Adams 2001

Black 2002

Jackson 2002

Brown 2004

Jones 2004

White 2003

Wilson 2003

Smith 2001

Adams 2001

Smith 2001

Black 2002

Jackson 2002

White 2003

Wilson 2003

Brown 2004

Jones 2004

Properties of Sorting Algorithms
Adaptability:

Non-Adaptive sort (aka oblivious sort) :

- uses the same sequence of operations, independent of input data

Adaptive sort :

- behaviour changes with “orderedness" of input

- different performance for ascending/descending/random input

★ can take advantage of existing order already present in the

sequence

#define compexch(A, B)

 if (less(B, A)) exch(A, B)

void sort(Item a[], int l, int r)

{

 int i, j;

 for (i = l+1; i <= r; i++)

 for (j = i; j > l; j--)

 compexch(a[j-1], a[j]);

}

void insertion(Item a[], int l, int r)

 { int i;

 for (i = r; i > l; i--) compexch(a[i-1], a[i]);

 for (i = l+2; i <= r; i++)

 { int j = i; Item v = a[i];

 while (less(v, a[j-1]))

 { a[j] = a[j-1]; j--; }

 a[j] = v;

 }

 }

Comparing Sorting Algorithms

• In-place algorithm implementation

– sorts the data within the original structure

– uses only a small constant amount of extra

storage space

• eg swapping elements within an array

• moving pointers within a linked list

• All sorting algorithms CAN be implemented in-place, but

some algorithms are naturally in-place and others are

not

Describing Sorting Algorithms

• To describe simple sorting, we use diagrams like:

In these algorithms

– a segment of the array is already sorted

– each iteration makes more of the array sorted

Sorting

• Three simple sorting algorithms:

– Bubble sort

• Bubble sort with Early Exit

– Selection sort

– Insertion sort

• One more complex sorting algorithm:

– Shell sort

Selection Sort

Simple, non-adaptive method:

• find the smallest element, put it into first array slot

• find second smallest element, put it into second array

slot

• repeat until all elements are in correct position

"Put in xth array slot" is accomplished by:swapping

value in xth position with xth smallest value

• Each iteration improves "sortedness" by one element

Selection Sort

State of the array after each iteration:

Selection Sort on an Array
//Does not use a second array. Sorts within the original

array

 void selectionSort(int a[], int lo, int hi) {

 int i, j, min;

 for (i = lo; i < hi; i++) {

 min = i; // current minimum is first unsorted

element

 // find index of minimum element

 for (j = i + 1; j <= hi; j++) {

 if (less(a[j],a[min])) {

 min = j; }

 }

 // swap a[i] with a[min]

 swap(a, i, min);

 }

}

Selection sort – Cost Analysis
• How many steps does it take to sort a collection of n=(hi-lo+1)

elements?

– on first pass, n-1 comparisons, 1 swap

– on second pass, n-2 comparisons, 1 swap

– …. on lass pass, 1 comparisons, 1 swap

– C = (n-1)+(n-2)+...+1 = n*(n-1)/2 = (n2-n)/2 ⇒ O(n2)

– S = n-1

– Selection is in O(N2)

• Implementation is not stable

• Implementation is in-place,

• Non-adaptive sort, as cost is same regardless of “orderedness” of

original array

Bubblesort

• A simple adaptive sort

• `Bubbles‘ rise to the top until they hit a bigger bubble,

which then starts to rise

Bubblesort (cont)

State of the array after each pass (iteration):

Bubble sort
// bubble sort

void bubbleSort(int a[], int lo, int hi)

{

 int i, j, nswaps;

 for (i = lo; i < hi; i++) {

 nswaps = 0;

 for (j = hi; j > i; j--) {

 if (less(a[j], a[j-1])) {

 swap(a,j,j-1);

 nswaps++;

 }

 }

 if (nswaps == 0) break;

 }

}

Bubble sort Cost Analysis

Bubble Sort: Analysis

• Adaptive sort

- We are able to improve sort by stopping when

the elements are sorted

- If we complete a whole pass with any swaps, we

know it must be in order

- Will not help cases that are in reverse order

• Stable, in-place sort

Insertion Sort

A simple adaptive sort method:

1. Take first element and insert it into first

position (trivially sorted, because it has

only one element)

2. Take next element, and insert it such that

order is preserved

3. Continue, until all elements are in the

correct positions

Insertion Sort

Simple Insertion Sort

void insertionSort(int a[], int lo, int hi)

{

 int i, j, min, val;

 min = lo;

 for (i = lo+1; i <= hi; i++)

 if (less(a[i],a[min])) min = i;

 swap(a, lo, min);

 for (i = lo+2; i <= hi; i++) {

 val = a[i];

 while (less(val, a[j-1]) {

 move(a, j, j-1); j-- }

 a[j] = val;

 }

}

Insertion Sort : Complexity Analysis

Complexity analysis ...

• cost for inserting element into sorted list of length i

– C=??, depends on "sortedness", best=1, worst=i

– S=0, don't swap

– M=??, depends where val fits, best=1, worst=i

• always have N iterations

• Costbest = 1 + 1 + ... + 1 (already sorted)

• Costworst = 1 + 2 + ... + N = N*(N+1)/2 (reverse

sorted)

• Complexity is thus O(n2)

Shell Sort

• Short comings of insertion sort/bubble sort
– Exchanges only involve adjacent elements

– Long distance exchanges can be more efficient

• Shell sort basic idea:
– Sequence is h-sorted

• taking every h-th element gives a sorted sequence

• h-sort the sequence with smaller values of h until h=1

• What sequence of h values should we use?
– Knuth proposed 1 4 13 40 121 364...

• It is easy to compute and results in an efficient sort

– What is the best sequence ? No-one knows

Example h-Sorted Arrays

Shell Sort (with h-values

1,4,13,40…)
void shellSort(int items[], int n) {

 int i, j, h;

 //the starting size of h is found.

 for (h = 1; h <= (n - 1)/9; h = (3 * h) + 1);

 for (; h > 0; h /= 3) {

 //when h = 1 this is insertion sort

 for (i = h; i < n; i++) {

 int key = items[i];

 for(j=i; j>=h && key<items[j - h]; j -=h){

 items[j] = items[j - h];

 }

 items[j] = key;

 }

 }

}

Shell Sort: Work Complexity

• Exact time complexity properties depend on the

h-sequence

– So far no-one has been able to analyse it precisely

– For the h-values we have used Knuth suggests around

O(n3/2)

• It is adaptive as it does less work when items

are in order – based on insertion sort.

• It is not stable,

• In-place

Linked List Implementations

Bubble Sort :
• Traverse list: if current element bigger than next, swap places,

repeat.

Selection Sort:
– Straight forward: delete selected element from list and insert

as first element into the sorted list, easy to make stable

Insertion Sort:
 Delete first element from list and insert it into new list. Make

sure that insertion preserves the order of the new list

Shell Sort:
• Can be done …but better suited to arrays

