
COMP2511

Synchronous vs Asynchronous 
Software Design

Prepared by
Dr. Ashesh Mahidadia



What is Synchronous programming?

• In synchronous programming, operations are carried out in order. 

• The execution of an operation is dependent upon the completion of the 
preceding operation.

• Tasks (functions) A, B, and C are executed in a sequence, often using one thread.

COMP2511: Synchronous vs Asynchronous Design 2

A

B

C



What is Asynchronous programming?

• In asynchronous programming, operations are carried out independently. 

• The execution of an operation is not dependent upon the completion of the 
preceding operation.

• Tasks (functions) A, B, and C are executed independently, can use multiple 
threads/resources.

COMP2511: Synchronous vs Asynchronous Design 3

A B
C A B

C
Call Back 
function for B

Call Back 
function for C



Example: Synchronous vs Asynchronous programming

COMP2511: Synchronous vs Asynchronous Design 4

function getRecord(key) { 
establish database connection
retrieve the record for key
return record; 

}

function display(rec){
display rec on the web page

}

rec = getRecord('Rita’);
display(rec) 

rec = getRecord('John');
display(rec) 

function getRecord(key, callback) { 
establish database connection
retrieve the record for key
callback(record); 

}

function display(rec){
display rec on the web page

}

getRecord(‘Rita’, display)
getRecord(‘John’, display)A

B

A
B

Synchronous Asynchronous



Kafka: An Example of Asynchronous Software Design
v Today, streams of data records, including streams of events, are continuously generated by many online applications.

v A streaming platform enables the development of applications that can continuously and easily consume and process 
streams of data and events. 

v Apache Kafka (Kafka) is a free and open-source distributed streaming platform useful for building, real time or 
asynchronous, event-driven applications.

v Kafka offers loose coupling between producers and consumers. 

COMP2511: Synchronous vs Asynchronous Design 5

v Consumers have the option to either consume an event in real 
time or asynchronously at a later time. 

v Kafka maintains the chronological order of records/events, 
ensuring fault tolerance and durability. 

v To increase scalability, Kafka separates a topic and stores each 
partition on a different node.

v Producer API – Permits an application to publish streams of 
records/events.

v Consumer API – Permits an application to subscribe to topics 
and processes streams of records/events.


