E T

Virtual Memory

LINIVE RSIT COMP3231 04s1 1
MEW SOUTH WALES

Virtual Address
Space

* Virtual Memory
— Divided into equal-
sized pages
— A mapping is a
translation between
+ Apage and a frame
« A page and null
— Mappings defined at
runtime
* They can change
— Address space can
have holes
— Process does not
have to be
contiguous in
memory

Paging

* Physical Memory
— Divided into
equal-sized
frames

Physical
Address Space

2

¥

Virtual Address

Typical Address

Space
[14] S ace Layout
Kernel / 13 p y
2] Stack region is at top,
Stack 111 and can grow down
- * Heap has free space to
Shared ’/ 9 grow up
Libraries B « Textis typically read-only
BSS |7 * Kernel is in a reserved,
(heap) ’\i protected, shared region
5 + 0-th page typically not
Data T\ used, why?
Text "/
THE L '\I h ||\ 3 MP3231 04s1 3

MEW SOUITH WALES

Virtual Address
Space

* A process may
be only partially
resident
— Allows OS to
swap individual
pages to disk

— Saves memory
for infrequently
used data & code

* What happens if
we access non-

Programmer’s perspective:
logically present

System’s perspective: Not
mapped, data on disk

resident Physical
memory? 113] Address Space
S

L

Page Faults

» Referencing an invalid page triggers a page fault

+ An exception handled by the OS

+ Broadly, two standard page fault types

— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
« Get an empty frame
* Load page from disk
« Update page (translation) table (enter frame #, set valid bit, etc.)
+ Restart the faulting instruction

* Note: Some implementations store disk block numbers

of non-resident pages in the page table (with valid bit
Unset)

ERSITY O COMP3231 04s1 5
NI SOUTH WAL e

Proc 1 Address

Proc 2 Address

r-=-=-== L
Space N ! 18] Space
Currently L fggl ! 14
running [+ £ing
Il i 13
112 : Physical 12
: | Address Spade ?
! 110] 15
! 19| 14 [14
' 18 3
1
! % 15| [1
i 5] Disk
Memory | 14
Access i 13
12
i 1]
THE USIVERSITY O OMP3231 04s1 6
E NEW SOUTH WALES Ic i




Virtual Address

— Each process has own
copy of code and data

— Code and data can
appear anywhere in
the address space

Shared Pages

« Private code and data + Shared code

— Single copy of code
shared between all
processes executing it

— Code must be “pure”
(re-entrant), i.e. not

self modifying

— Code must appear at
same address in all
processes

Space (6]
Page
Table |7
+ Page table for =
resident part of ]
address space ]
3]
1]
Physical |7 |
Address Space 7
Loz
Proc 1 Address Proc 2 Address
: Space E 5] Space :
o i i ]
- 2 [E] H
I E Physical E ]
L ﬂ Address Spage 1 ]
- 10 —
- 9] ]
- 8 —
+— Two (or more) L7 |
|| processes | 6| ]
running the
[ | same program v
(1] and sharing 14|
—— the text section ||
L7 7
2| Page .IF_’aSI e 3
i '+ Table . n COMP3231 04s1 able o

E THE UISIVERSITY O COMP3231 04s1 8
MEW SOUTH WALES

Page Table Structure -

» Page table is (logically) an array of 5]
frame numbers -
— Index by page number ]

» Each page-table entry (PTE) also has

other bits —
Caching L
disabled  Modified Present/absent

i [/ / ]
V/ ‘ ‘ ‘ ‘ ‘ Page frame number T
) , 4]
\ \ -

Referenced Protection 7
Page [
THE U COMP3231 04s1 Table 10

USIVERSITY O
MEW SOUTH WALES

PTE bits
* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
« Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

« Reference bit
— Indicates the page has been accessed
» Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
« Caching bit
— Use to indicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

E THE URNIVERSITY (3 COMP3231 04s1 1
MEW SOUTH WALES

|0

Address Translation

 Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

E THE URNIVERSITY (3 COMP3231 04s1 12
MEW SOUTH WALES




Virtual Adkiress

Reghter

\/\

Program Paging Mechanism Muin Memory

Figure 8.3 Address Tramslation in o Pagimg System

=

Page Tables

» Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— eg., 0.1-1MB text, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— But is still very fast to search

* Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables

THE UMIVERSITY O
NEW SOUTH WALES

COMP3231 04s1 15

E

Page Tables

* Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?

THE UMIVERSITY O
NEW SOUTH WALES

COMP3231 04s1 14

page tables

Two-level Page

o
Table 5]
=
+ 2nd —fevel -
page tables fiard !
representing 1023 11—
unmapped o 1 T,

Bta 10 0 12 {
pages are nOt PT1 I PT2 | Ottat -15 -
allocated - : e
— Nullin the M n =

top-level
page table ﬁ;
. 1-
¢ : o
; 1w
H 37 sages
o = bl

Two-level Translation

[
"
Virwal Addres
"
10 bk | 10k | 120 [y
T T [

Miset page table

icamiaim 1024 ITES)

'
1

1

1

T

1

1

1

]

L]

'

1

1

]

1

1

1

1

1

]

1
bk S
1024 PTES) 1
1
1
1
1

Program Puging Mechanism Main Memaory

E

E

THE UMIVERSITY O
NEW SOUTH WALES

E

Alternative: Inverted Page Table

Virtal Addres

Page 8
Page Table
Poge®  Eniry  Chain
{hash)  —
[Frame
Frame § Ot |
Hash Table Tverted Puge Table Real Address

FHE USIVERS T L
NEW SOUTH WALES

(SR RTRvE 0




Inverted Page Table (IPT)

» “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).
» Algorithm
— Compute hash of page number
— Use this to index hash anchor table (HAT)
— HAT contains candidate frame number
— Use this to index into frame table
— Match the page number in the FT entry
— If match, use the frame # for translation
— If no match, get next candidate frame number from

chain field
— If NULL chain entry = page fault
'\IIII“'. ')I'l. !Illirl\l‘\“llJL COMP3231 04s1 19

5

Alternative: Virtual Linear Array
page table

* Assume a 2-level PT
+ Assume 2"-level PT nodes are in virtual memory

+ Assume all 2"-level nodes are allocated contiguously =
2nd-level nodes form a contiguous array indexed by page
number

ipurest [TTR
peeciebo | ]|

1\
o

4-Mbryts page table

-Gyt virtusl sdteess space

HE UNIVERSITY O3 COMP3231 04s1 21
MEW SOUTH WALES

THE UMIVERSITY O
MEW SOUTH WALES

Properties of IPTs

» IPT grows with size of RAM, NOT virtual
address space

» Frame table is needed anyway (for page
replacement, more later)

* Need a separate data structure for non-
resident pages

+ Saves a vast amount of space (especially
on 64-bit systems)

¢ Used in some IBM and HP workstations

COMP3231 04s1 20

¥

VM Implementation Issue

* Problem:

— Each virtual memory reference can cause two
physical memory accesses
» One to fetch the page table entry
+ One to fetch/store the data
=lIntolerable performance impact!!

» Solution:

— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
+ May be under OS control (unlike memory cache)

VERSITY O COMP3231 04s1 23

THE LI
MEW SOUTH WALES

¥

Virtual Linear Array Operation

tipmreet 1]
pogatable || |

|\‘
A
\
—t \i B
| |
= 4-Mbyte page table
» Index into 2nd level page table without referring to root
PT!
» Simply use the full page number as the PT index!
» Leave unused parts of PT unmapped!
» If access is attempted to unmapped part of PT, a
secondary page fault is triggered
— This will load the mapping for the PT from the root PT
— Root PT is kept in physical memory (cannot trigger page faults)

i N NN EaN

-Gyt virtusl addess space

THE LN COMP3231 04s1 22

USIVERSITY O
MEW SOUTH WALES

TLB operation

Secondary

Main Memery
Virfusl Address ain Memory Memory

[P e [ oot |
—
LU Wit R 3
1 £} |,
[E)
Fage Table -
[ )
! -
TLE mbs f
L. )
[Frame o et |
Beal Addres ‘-../-‘“
Pz fait




Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB

+ If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
» Otherwise, allocate a new page or raise an exception

E THE UISIVERSITY O COMP3231 04s1 25
MEW SOUTH WALES

TLB properties

» Page table is (logically) an array of frame
numbers

» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates
— Access is by associative lookup:
< All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

TLB properties
» TLB may or may not be under OS control
— Hardware-loaded TLB
* On miss, hardware performs PT lookup and reloads TLB
« Example: Pentium
— Software-loaded TLB

* On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS
» TLB size: typically 64-128 entries
» Can have separate TLBs for instruction fetch
and data access
» TLBs can also be used with inverted page tables
(and others)

HE UNIVERSITY O3 COMP3231 04s1 27
MEW SOUTH WALES

THE USIVERSITY €1 26
MNEW SOLTH WALE

TLB and context switching
» TLB is a shared piece of hardware
» Page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate
all entries)
* high context-switching overhead (ix86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB

« used (in some form) on all modern architectures

» TLB entry: ASID, page #, frame #, valid and write-protect
bits

TLB effect

+ Without TLB
— Average number of physical memory
references per virtual reference
=2
* With TLB (assume 99% hit ratio)
— Average number of physical memory
references per virtual reference
=.99*1+0.01*2
=1.01

E THE URNIVERSITY (3 COMP3231 04s1 29
MEW SOUTH WALES

E THE UISIVERSITY O COMP3231 04s1 28
MEW SOUTH WALES

Simplified Components of VM

Virtual Address SySte Page Tables for 3
Spaces (3 processes) processes
Frame Table
N «|
R 4
Q@
N
CPU
TLB
2| |3

Frame Pool

Physical Memory

E THE USNIVERSITY OF COMP3231 04s1 30
NEW SOUTH WALES




Kl 12

MIPS R3000 TLB

n 6 5 0

» D = Dirty = Write protect
* G = Global (ignore ASID
in lookup)

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231

| VPN | ASID ‘ 0
EntryHi Register (TLB key fields)
31 12 n 10 9 8 7 0
|PFN ‘N |D |V|G|O
Entrylo Register (TLB data fields)
* N = Not cacheable + V= valid bit

64 TLB entries

Accessed via software through
Cooprocessor 0 registers
— EntryHi and EntryLo

04s1 31

R3000 Address
Space Layout

— Switching processes
switches the translation

OXFFFFFFFF

0xC000000

0xA0000000,
(page table) for kuseg
0x80000000
Proc 1 Proc 2 Proc 3
kuseg kuseg kuseg
04s1
0x00000000

R3000 Address
Space Layout

« kseg1:
— 512 megabytes
— Fixed translation window to
physical memory
+ 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

* TLB not used

— NOT cacheable

— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

OxfEEEEEEE

0xC0000000

0x800¢0000

Physical Memory

THE UMIVERSITY O
MEW SOUTH WALES

1

0x00000000

R3000 Address
Space Layout

* kuseg:
— 2 gigabytes
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode
accessible
— Page size is 4K

THE UMIVERSITY O
MEW SOUTH WALES

OXFFFFFFFF

0xC000000

0xA000000

0x80000000

COMP3231 04s1

0x00000000

kuseg

R3000 Address
Space Layout

* ksegO:
— 512 megabytes
— Fixed translation window to
physical memory
+ 0x80000000 - OxOfffffff virtual =
0x00000000 - 0x1fffffff physical

* TLB not used

— Cacheable

— Only kernel-mode accessible

— Usually where the kernel code is
placed

OxfEfEfFFFF

0xC0000000

0xA0000000

0x80000000

Physical Memory

THE UMIVERSITY O
MEW SOUTH WALES

1

0x00000000

kuseg

R3000 Address
Space Layout

* kseg2:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N'-bit
— Only kernel-mode accessible

— Can be used to store the virtual
linear array page table

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1

OXEEEEEEEE

0xC0000000

0xA0000000

0x80000000

0x00000000

kuseg




