
1COMP3231 04s1

I/O Management

Chapter 5



2COMP3231 04s1

Operating System Design 
Issues

• Efficiency
– Most I/O devices slow compared to main memory 

(and the CPU)
• Use of multiprogramming allows for some processes to be 

waiting on I/O while another process executes
• Often I/O still cannot keep up with processor speed
• Swapping may used to bring in additional Ready processes 

– More I/O operations

• Optimise I/O efficiency – especially Disk & 
Network I/O



3COMP3231 04s1

Operating System Design 
Issues

• The quest for generality/uniformity:
– Ideally, handle all I/O devices in the same way

• Both in the OS and in user applications
– Problem: 

• Diversity of I/O devices
• Especially, different access methods (random access versus 

stream based) as well as vastly different data rates.
• Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level 
routines so that processes and upper levels see 
devices in general terms such as read, write, open, 
close.



4COMP3231 04s1

I/O Software Layers

Layers of the I/O Software System



5COMP3231 04s1

Interrupt Handlers
• Interrupt handlers are best “hidden”

• Can execute at almost any time
– Raise (complex)  concurrency issues in the kernel
– Have similar problems within applications if interrupts are 

propagated to user-level code (via signals, upcalls).

– Generally, systems are structure such that drivers 
starting an I/O operations block until interrupts notify 
them of completion

– Example dev_read() waits on semaphore that the interrupt 
handler signals.

• Interrupt procedure does its task
– then unblocks driver waiting on completion



6COMP3231 04s1

Interrupt Handler Steps
• Steps must be performed in software upon occurrence of 

an interrupt
– Save regs not already saved by hardware interrupt mechanism
– Set up context (address space) for interrupt service procedure

• Typically, handler runs in the context of the currently running process
– No expensive context switch

– Set up stack for interrupt service procedure
• Handler usually runs on the kernel stack of current process

– Implies handler cannot block as the unlucky current process will
also be blocked ⇒ might cause deadlock

– Ack/Mask interrupt controller, reenable other interrupts



7COMP3231 04s1

Interrupt Handler Steps
– Run interrupt service procedure 

• Acknowledges interrupt at device level
• Figures out what caused the interrupt

– Received a network packet, disk read finished, UART transmit 
queue empty

• If needed, it signals blocked device driver
– In some cases, will have woken up a higher priority 

blocked thread
• Choose newly woken thread to schedule next.
• Set up MMU context for process to run next

– Load new/original process' registers
– Re-enable interrupt; Start running the new process



8COMP3231 04s1

Device Drivers
• Logical position of device drivers 

is shown here
• Drivers (originally) compiled into 

the kernel
– Including OS/161
– Device installers were 

technicians
– Number and types of devices 

rarely changed
• Nowadays they are dynamically 

loaded when needed
– Linux modules
– Typical users (device installers) 

can’t build kernels
– Number and types vary greatly

• Even while OS is running (e.g 
hot-plug USB devices)



9COMP3231 04s1

Device Drivers
• Drivers classified into similar categories

– Block devices and character (stream of data) device
• OS defines a standard (internal) interface to the 

different classes of devices
• Device drivers job 

– translate request through the device-independent 
standard interface (open, close, read, write) into 
appropriate sequence of commands (register 
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down 
cleanly at shutdown 



10COMP3231 04s1

Device Driver
• After issuing the command to the device, the 

device either
– Completes immediately and the driver simply returns 

to the caller
– Or,  device must process the request and the driver 

usually blocks waiting for an I/O complete interrupt.
• Drivers are reentrant as they can be called by 

another process while a process is already 
blocked in the driver.
– Reentrant: Code that can be executed by more than 

one thread (or CPU) at the same time
• Manages concurrency using synch primitives



11COMP3231 04s1

Device-Independent I/O 
Software

• There is commonality between drivers of 
similar classes

• Divide I/O software into device-dependent 
and device-independent I/O software

• Device independent software includes
– Buffer or Buffer-cache management
– Managing access to dedicated devices
– Error reporting



12COMP3231 04s1

Device-Independent I/O Software 

(a) Without a standard driver interface
(b) With a standard driver interface



13COMP3231 04s1

Driver ⇔ Kernel Interface
• Major Issue is uniform interfaces to devices and 

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way
– No need to rewrite filesystem to switch between SCSI, IDE or 

RAM disk 
• Allows internal changes to device driver with fear of breaking 

kernel code
– Uniform kernel interface for device code

• Drivers use a defined interface to kernel services (e.g. 
kmalloc, install IRQ handler, etc.)

• Allows kernel to evolve without breaking existing drivers
– Together both uniform interfaces avoid a lot of 

programming implementing new interfaces 



14COMP3231 04s1

Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user 

space
(d) Double buffering in the kernel



15COMP3231 04s1

No Buffering

• Process must read/write a device a 
byte/word at a time
– Each individual system call adds significant 

overhead
– Process must what until each I/O is complete

• Blocking/interrupt/waking adds to overhead.
• Many short runs of a process is inefficient (poor 

CPU cache temporal locality)



16COMP3231 04s1

User-level Buffering
• Process specifies a memory buffer that incoming 

data is placed in until it fills
– Filling can be done by interrupt service routine
– Only a single system call, and block/wakeup per data 

buffer
• Much more efficient



17COMP3231 04s1

User-level Buffering
• Issues

– What happens if buffer is paged out to disk
• Could lose data while buffer is paged in
• Could lock buffer in memory (needed for DMA), however 

many processes doing I/O reduce RAM available for paging. 
Can cause deadlock as RAM is limited resource

– Consider write case
• When is buffer available for re-use?

– Either process must block until potential slow device drains 
buffer

– or deal with asynchronous signals indicating buffer drained 



18COMP3231 04s1

Single Buffer

• Operating system assigns a buffer in main 
memory for an I/O request

• Stream-oriented
– Used a line at time
– User input from a terminal is one line at a time 

with carriage return signaling the end of the 
line

– Output to the terminal is one line at a time



19COMP3231 04s1

Single Buffer

• Block-oriented
– Input transfers made to buffer
– Block moved to user space when needed
– Another block is moved into the buffer

• Read ahead



20COMP3231 04s1

Single Buffer
– User process can process one block of data 

while next block is read in
– Swapping can occur since input is taking 

place in system memory, not user memory
– Operating system keeps track of assignment 

of system buffers to user processes



21COMP3231 04s1

Single Buffer Speed Up
• Assume 

– T is transfer time from device
– C is computation time to process incoming packet
– M is time to copy kernel buffer to user buffer

• Computation and transfer can be done in parallel
• Speed up with buffering

MCT
CT
+

+
),max(



22COMP3231 04s1

Single Buffer

• What happens if kernel buffer is full, the 
user buffer is swapped out, and more data 
is received???
– We start to lose characters or drop network 

packets



23COMP3231 04s1

Double Buffer

• Use two system buffers instead of one
• A process can transfer data to or from one 

buffer while the operating system empties 
or fills the other buffer



24COMP3231 04s1

Double Buffer Speed Up
• Computation and Memory copy can be done in 

parallel with transfer
• Speed up with double buffering

• Usually M is much less than T giving a 
favourable result

),max( MCT
CT
+

+



25COMP3231 04s1

Double Buffer

• May be insufficient for really bursty traffic
– Lots of application writes between long 

periods of computation
– Long periods of application computation while 

receiving data
– Might want to read-ahead more than a single 

block for disk



26COMP3231 04s1

Circular Buffer
• More than two buffers are used
• Each individual buffer is one unit in a circular 

buffer
• Used when I/O operation must keep up with 

process



27COMP3231 04s1

Important Note

• Notice that buffering, double buffering, and 
circular buffering are all

Bounded-Buffer 
Producer-Consumer 

Problems



28COMP3231 04s1

Is Buffering Always Good?

• Can M be similar or greater than C or T?

),max( MCT
CT
+

+
MCT

CT
+

+
),max(

Single Double



29COMP3231 04s1

Buffering in Fast Networks

• Networking may involve many copies
• Copying reduces performance

– Especially if copy costs are similar to or greater than computation or 
transfer costs

• Super-fast networks put significant effort into achieving zero-copy
• Buffering also increases latency



30COMP3231 04s1

I/O Software Summary

Layers of the I/O system and the main 
functions of each layer


