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I/O Management

Chapter 5
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Operating System Design 
Issues

• Efficiency
– Most I/O devices slow compared to main memory 

(and the CPU)
• Use of multiprogramming allows for some processes to be 

waiting on I/O while another process executes
• Often I/O still cannot keep up with processor speed
• Swapping may used to bring in additional Ready processes 

– More I/O operations

• Optimise I/O efficiency – especially Disk & 
Network I/O
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Operating System Design 
Issues

• The quest for generality/uniformity:
– Ideally, handle all I/O devices in the same way

• Both in the OS and in user applications
– Problem: 

• Diversity of I/O devices
• Especially, different access methods (random access versus 

stream based) as well as vastly different data rates.
• Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level 
routines so that processes and upper levels see 
devices in general terms such as read, write, open, 
close.
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I/O Software Layers

Layers of the I/O Software System
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Interrupt Handlers
• Interrupt handlers are best “hidden”

• Can execute at almost any time
– Raise (complex)  concurrency issues in the kernel
– Have similar problems within applications if interrupts are 

propagated to user-level code (via signals, upcalls).

– Generally, systems are structure such that drivers 
starting an I/O operations block until interrupts notify 
them of completion

– Example dev_read() waits on semaphore that the interrupt 
handler signals.

• Interrupt procedure does its task
– then unblocks driver waiting on completion
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Interrupt Handler Steps
• Steps must be performed in software upon occurrence of 

an interrupt
– Save regs not already saved by hardware interrupt mechanism
– Set up context (address space) for interrupt service procedure

• Typically, handler runs in the context of the currently running process
– No expensive context switch

– Set up stack for interrupt service procedure
• Handler usually runs on the kernel stack of current process

– Implies handler cannot block as the unlucky current process will
also be blocked ⇒ might cause deadlock

– Ack/Mask interrupt controller, reenable other interrupts
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Interrupt Handler Steps
– Run interrupt service procedure 

• Acknowledges interrupt at device level
• Figures out what caused the interrupt

– Received a network packet, disk read finished, UART transmit 
queue empty

• If needed, it signals blocked device driver
– In some cases, will have woken up a higher priority 

blocked thread
• Choose newly woken thread to schedule next.
• Set up MMU context for process to run next

– Load new/original process' registers
– Re-enable interrupt; Start running the new process
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Device Drivers
• Logical position of device drivers 

is shown here
• Drivers (originally) compiled into 

the kernel
– Including OS/161
– Device installers were 

technicians
– Number and types of devices 

rarely changed
• Nowadays they are dynamically 

loaded when needed
– Linux modules
– Typical users (device installers) 

can’t build kernels
– Number and types vary greatly

• Even while OS is running (e.g 
hot-plug USB devices)
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Device Drivers
• Drivers classified into similar categories

– Block devices and character (stream of data) device
• OS defines a standard (internal) interface to the 

different classes of devices
• Device drivers job 

– translate request through the device-independent 
standard interface (open, close, read, write) into 
appropriate sequence of commands (register 
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down 
cleanly at shutdown 
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Device Driver
• After issuing the command to the device, the 

device either
– Completes immediately and the driver simply returns 

to the caller
– Or,  device must process the request and the driver 

usually blocks waiting for an I/O complete interrupt.
• Drivers are reentrant as they can be called by 

another process while a process is already 
blocked in the driver.
– Reentrant: Code that can be executed by more than 

one thread (or CPU) at the same time
• Manages concurrency using synch primitives
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Device-Independent I/O 
Software

• There is commonality between drivers of 
similar classes

• Divide I/O software into device-dependent 
and device-independent I/O software

• Device independent software includes
– Buffer or Buffer-cache management
– Managing access to dedicated devices
– Error reporting



12COMP3231 04s1

Device-Independent I/O Software 

(a) Without a standard driver interface
(b) With a standard driver interface
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Driver ⇔ Kernel Interface
• Major Issue is uniform interfaces to devices and 

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way
– No need to rewrite filesystem to switch between SCSI, IDE or 

RAM disk 
• Allows internal changes to device driver with fear of breaking 

kernel code
– Uniform kernel interface for device code

• Drivers use a defined interface to kernel services (e.g. 
kmalloc, install IRQ handler, etc.)

• Allows kernel to evolve without breaking existing drivers
– Together both uniform interfaces avoid a lot of 

programming implementing new interfaces 
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Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user 

space
(d) Double buffering in the kernel
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No Buffering

• Process must read/write a device a 
byte/word at a time
– Each individual system call adds significant 

overhead
– Process must what until each I/O is complete

• Blocking/interrupt/waking adds to overhead.
• Many short runs of a process is inefficient (poor 

CPU cache temporal locality)



16COMP3231 04s1

User-level Buffering
• Process specifies a memory buffer that incoming 

data is placed in until it fills
– Filling can be done by interrupt service routine
– Only a single system call, and block/wakeup per data 

buffer
• Much more efficient
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User-level Buffering
• Issues

– What happens if buffer is paged out to disk
• Could lose data while buffer is paged in
• Could lock buffer in memory (needed for DMA), however 

many processes doing I/O reduce RAM available for paging. 
Can cause deadlock as RAM is limited resource

– Consider write case
• When is buffer available for re-use?

– Either process must block until potential slow device drains 
buffer

– or deal with asynchronous signals indicating buffer drained 
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Single Buffer

• Operating system assigns a buffer in main 
memory for an I/O request

• Stream-oriented
– Used a line at time
– User input from a terminal is one line at a time 

with carriage return signaling the end of the 
line

– Output to the terminal is one line at a time
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Single Buffer

• Block-oriented
– Input transfers made to buffer
– Block moved to user space when needed
– Another block is moved into the buffer

• Read ahead
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Single Buffer
– User process can process one block of data 

while next block is read in
– Swapping can occur since input is taking 

place in system memory, not user memory
– Operating system keeps track of assignment 

of system buffers to user processes



21COMP3231 04s1

Single Buffer Speed Up
• Assume 

– T is transfer time from device
– C is computation time to process incoming packet
– M is time to copy kernel buffer to user buffer

• Computation and transfer can be done in parallel
• Speed up with buffering

MCT
CT
+

+
),max(
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Single Buffer

• What happens if kernel buffer is full, the 
user buffer is swapped out, and more data 
is received???
– We start to lose characters or drop network 

packets
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Double Buffer

• Use two system buffers instead of one
• A process can transfer data to or from one 

buffer while the operating system empties 
or fills the other buffer
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Double Buffer Speed Up
• Computation and Memory copy can be done in 

parallel with transfer
• Speed up with double buffering

• Usually M is much less than T giving a 
favourable result

),max( MCT
CT
+

+
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Double Buffer

• May be insufficient for really bursty traffic
– Lots of application writes between long 

periods of computation
– Long periods of application computation while 

receiving data
– Might want to read-ahead more than a single 

block for disk
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Circular Buffer
• More than two buffers are used
• Each individual buffer is one unit in a circular 

buffer
• Used when I/O operation must keep up with 

process
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Important Note

• Notice that buffering, double buffering, and 
circular buffering are all

Bounded-Buffer 
Producer-Consumer 

Problems
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Is Buffering Always Good?

• Can M be similar or greater than C or T?

),max( MCT
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Buffering in Fast Networks

• Networking may involve many copies
• Copying reduces performance

– Especially if copy costs are similar to or greater than computation or 
transfer costs

• Super-fast networks put significant effort into achieving zero-copy
• Buffering also increases latency
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I/O Software Summary

Layers of the I/O system and the main 
functions of each layer


