
Slide 1

OVERVIEW

Last Week:

➜ Scheduling Algorithms

➜ Real-time systems

Today:

➜ Yet another real-time scheduling algorithm

➜ Case studies

• Changes in the Linux kernel

• Real-time operating systems

• Windows 2000: Scheduling, VM

➜ Overview

Next Week:

➜ Q & A session: send me a list of topics you would like me to

explain again

Slide 2

Problem:

➜ in real life applications, many tasks are not always periodic.

➜ static priorities may not work

If real time threads run periodically with same length, fixed

priority is no problem:

a a a a a a a

b b b b b b b

- a: periodic real time thread, highest priority

- b: periodic real time thread

- various different low priority tasks (e.g., user I/O)

OVERVIEW 1

Slide 3

But if frequency of high priority task increases temporarily,

system may encounter overload:

- system not able to respond

- system may not be able to perform requested service

Slide 4

Example: (from Scheduling Sporadic Events, Lonni Vanzandt)

Network interface control driver, requirements:

➜ avoid if possible to drop packets

➜ definitely avoid overload

If receiver thread get highest priority permanently, system

may go into overload if incoming rate exceeds a certain

value.

➜ expected frequency: packet once every 64µs

➜ CPU time required to process packet: 25µs

➜ 32-entry ring buffer, max 50% full

receiver
thread

25µs/packet

packet every 64µs

SPORADIC SCHEDULING 2



Slide 5

SPORADIC SCHEDULING

POSIX standard to handle

➜ aperiodic or sporadic events

➜ with static priority, preemptive scheduler

Implemented in hard real-time systems such as QNX, some

real-time versions of Linux, real-time specification for Java

(RTSJ)(partially)

Can be used to avoid overloading in a system

Slide 6

Basic Idea: “simulation” of periodic behaviour of thread by

assigning

➜ realtime priority: Pr

➜ background priority: Pb

➜ execution budget: E

➜ replenishment interval: R

to thread.

➜ Whenever thread exhausts execution budget, priority is set to

background priority Pb

➜ When thread blocks after n units, n will be added to execution

budget R units after execution started

➜ When execution budget is incremented, thread priority is reset

to Pr

SPORADIC SCHEDULING 3

Slide 7

Example:

➜ execution budget: 5

➜ replenishment interval: 13

Thread does not block:

5 10 15

5

budget

time

replenishment interval

Slide 8

Thread blocks:

5 10 15 20

5

budget

time

replenishment interval

replenishment interval

(0) exection starts, 1st replenishment interval starts

(3) thread blocks

(5) continues execution, 2nd replenishment interval starts

(7) budget exhausted

(13) budget set to 3, thread continues execution

(16) budget exhausted

(18) budget set to 2

(19) thread continues execution

SPORADIC SCHEDULING 4



Slide 9

Example: Network interface control Driver

➜ use expected incoming rate and desired max CPU utilisation of

thread to compute execution budget and replenishment

period

➜ if no other threads wait for execution, packets can be

processed even if load is higher

➜ otherwise, packets may be dropped

receiver

thread
25µs/packet

packet every 64µs

➜ period: 64µs * 16 = 1024µs

➜ execution time: 25µs * 16 = 400µs

➜ CPU load caused by receiver thread: 400/1024 = 0.39, about

39%

Slide 10

HARD REAL TIME OS

We look at examples of three types of systems:

➜ real-time support in a general purpose operating system

➜ configurable hard real time systems

• system designed as real time OS from the start

➜ hard real-time variants of general purpose OSs

• try to alleviate shortcomings of OS with respect to real time

apps

REAL-TIME SUPPORT IN L INUX 2.4. 5

Slide 11

REAL-TIME SUPPORT IN LINUX 2.4.

➜ Scheduling:

- POSIX SCHED FIFO, SCHED RR,

➜ Virtual Memory:

- no VM for real-time apps

- mlock() and mlockall() to switch off paging (which other

applications might need to do this?)

➜ Timer: resolution: 10ms, too coarse grained for real-time apps

Slide 12

IMPROVEMENTS IN 2.6 KERNEL

➜ Kernel Preemption

• kernel code laced with preemption points

• calling process can block and thereby yield CPU to

higher-priority process

➜ Kernel can be built without VM

➜ Improved scheduler

➜ Timer resolution: 1ms

SCHEDULING IN 2.4 AND 2.6: COMPARISON 6



Slide 13

SCHEDULING IN 2.4 AND 2.6: COMPARISON

2.4:

➜ CPU time divided into epochs

➜ Each process has a (poss. different) time quantum it is allowed

to run in every epoch

➜ Epoch ends when all runnable processes have exhausted their

quantum

➜ Time quantum for each process recomputed after every epoch

➜ To find the next process which should be scheduled, the

complete ready-queue has to be scanned

➜ SMP: only single ready-queue

➜ O(n) algorithm: overhead grows linearly with number of PE’s

➜ Ready queue access bottle neck for SMP

Slide 14

2.6:

➜ Queue for each priority

➜ Thread can be in active (quantum not yet expired) or expired

(quantum already used up) queue.

➜ Priority is re-calculated after quantum is expired

➜ Interactive processes inserted back into active-queue

➜ SMP: One set of queue per processor, idle processors steal work

from other processors

➜ O(1) algorithm: time required for scheduling decision does not

depend on number of processes

➜ Ready queue access not a bottle neck for SMP

➜ Better locality

RTL INUX 7

Slide 15

RTLINUX

➜ abstract machine layer between actual hardware and Linux

kernel

➜ takes control of

- hardware interrupts

- timer hardware

- interrupt disable mechanism

➜ real time scheduler runs with no interference fron Linux kernel

➜ programmer must utilise RTLinux API for real time applications

Slide 16

QNX

➜ Microkernel based architecture

➜ POSIX standard API

➜ Modular — can be costumised for very small size (eg,

embedded systems) or large systems

➜ Memory protection for user applications and os components

Scheduling:

➜ FIFO scheduling

➜ Round-robin

➜ Adaptive scheduling

- thread consumes its timeslice, its priority is reduced by one

- thread blocks, it immediately comes back to its base priority

➜ POSIX sporadic scheduling

QNX 8



Slide 17

Kernel Services:

➜ Thread services: provides the POSIX thread creation primitives.

➜ Signal services: provides the POSIX signal primitives.

➜ Message passing services: handles the routing of all messages

between all threads through the whole system.

➜ Synchronization services: provides the POSIX thread

synchronization primitives.

➜ Scheduling services: schedules threads using the various POSIX

realtime scheduling algorithms.

➜ Timers services: provides the set of POSIX timer.

Slide 18

Process Manager:

The process manager is capable of creating multiple POSIX

processes (each of which may contain multiples POSIX

threads). Its main areas of responsability include:

➜ Process management: manages process creation, destruction,

and process attributes such us user ID and group ID.

➜ Memory management: manages memory protection, shared

libraries, and POSIX shared memory primitives.

➜ Pathname management: manages the pathname space

(mountpoints).

WINDOWS CE 5.0 9

Slide 19

WINDOWS CE 5.0

Componentised OS designed for embedded systems with

hard real-time support

➜ handles nested interrupts

➜ handles priority inversion based on priority inheritance

Offers

➜ guaranteed upper bound on high priority thread scheduling

➜ guaranteed upper bound on delay for interrupt service routines

Slide 20

WINDOWS 2000 CASE STUDY

➜ Scheduling

➜ Virtual Memory Management

WINDOWS 2000 SCHEDULING 10



Slide 21

WINDOWS 2000 SCHEDULING

➜ priority driven, preemptive scheduling system

➜ SMP: set of processors a thread can run on may be restricted

(processor affinity)

➜ scheduling decision may be necessary when

• a new thread has been created

• a thread released from wait state

• time quantum of a thread is exceeded

• a thread’s priority changes

• processor affinity of a thread changes

➜ no dedicated scheduler thread — each thread chooses

successor while running in kernel mode

Slide 22

Address
space

Thread

Process

User
stack

Kernel mode thread stack

Access token

Process
handle
table P T T T T P

Job

WINDOWS 2000 SCHEDULING 11

Slide 23

➜ if thread with higher priority becomes ready to run, current

thread is preempted

➜ scheduled at thread granularity

• processes with many threads get more CPU time

Slide 24

WINDOWS 2000 SCHEDULING

➜ Windows 2000 priority levels:

➜ 0 (zero-page thread)

➜ 1-15 (variable levels)

➜ 16-31 (realtime levels — soft)

➜ Win32 API priority classes:

• Real-time

• High

• Above Normal

• Normal

• Below Normal

• Idle

and relative priorities within these classes:

• Time-critical

• High

• . . .

WINDOWS 2000 SCHEDULING 12



Slide 25

➜ each thread has a quantum value, clock-interrupt handler

deducts 3 from running thread quantum

➜ default value of quantum: 6 Windows 2000 Professional, 36 on

Windows 2000 Server

➜ most wait-operations result in temporary priority boost, favouring

IO-bound threads

➜ priority of a user thread can be raised (eg, after waiting for a

semaphore etc), but never above 15

➜ no adjustments to priorities above 15

Slide 26

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Win32 process class priorities

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Above Below
Realtime High Normal Normal Normal Idle

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Time critical 31 15 15 15 15 15

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Highest 26 15 12 10 8 6

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Win32 Above normal 25 14 11 9 7 5

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

thread Normal 24 13 10 8 6 4

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

priorities Below normal 23 12 9 7 5 3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Lowest 22 11 8 6 4 2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Idle 16 1 1 1 1 1

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

WINDOWS 2000 SCHEDULING 13

Slide 27

Next thread to run

Priority

System
priorities

User
priorities

Zero page thread

31

24

16

8

1
0

Idle thread

Slide 28

DEALING WITH PRIORITY INVERSION IN WINDOWS 2000

Example: Producer-Consumer problem

12

4

8

12

Does a down on the
semaphore and blocks

Semaphone Semaphone

Blocked

Running

Ready

Waiting on the semaphore

Would like to do an up
on the semaphore but
never gets scheduled

(a) (b)

➜ System keeps track of how long a ready-thread has been in the

queue

➜ if waiting time exceeds threshold, priority boosted to 15

MEMORY MANAGEMENT 14



Slide 29

MEMORY MANAGEMENT

➜ Every process has 4GB virtual address space

Process A
4 GB

2 GB

0

Nonpaged pool

Paged pool

A's page tables

Stacks, data, etc

HAL + OS

System data

Process A's
private code

and data

Process B

Nonpaged pool

Paged pool

B's page tables

Stacks, data, etc

HAL + OS

System data

Process B's
private code

and data

Process C

Nonpaged pool

Paged pool

C's page tables

Stacks, data, etc

HAL + OS

System data

Process C's
private code

and data

Bottom and top
64 KB are invalid

Slide 30

MEMORY MANAGEMENT

➜ A page can be in one of three states:

• free: not in use, reference to such a page causes a page

fault

• committed: data or code mapped onto the page. If not in

main memory, page fault occurs, OS swaps page from disk

• reserved: not yet mapped, but also not available. Used, for

example, to implement thread stacks

and has the usual readable, writable, executable attributes

MEMORY MAPPED F ILES 15

Slide 31

MEMORY MAPPED FILES

➜ memory mapped filed supported

➜ processes may share maps, updates visible to all processes

➜ if file is opened for normal reading, current version is shown

➜ copy-on-write (cow)

Process A Process B

Backing store on disk

Paging file

Lib.dll

Prog1.exe Prog2.exe

Program
Program

Shared
library

Shared
library

Data

StackStack

DataRegion

Slide 32

WIN32 API FOR VM

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Win32 API function Description

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

VirtualAlloc Reserve or commit a region

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

VirtualFree Release or decommit a region

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

VirtualProtect Change the read/write/execute protection on a region

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

VirtualQuery Inquire about the status of a region

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

VirtualLock Make a region memory resident (i.e., disable paging for it)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

VirtualUnlock Make a region pageable in the usual way

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

CreateFileMapping Create a file mapping object and (optionally) assign it a name

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

MapViewOfFile Map (part of) a file into the address space

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

UnmapViewOfFile Remove a mapped file from the address space

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

OpenFileMapping Open a previously created file mapping object
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

MEMORY MANAGEMENT 16



Slide 33

MEMORY MANAGEMENT

➜ Unlike scheduler, who deals with threads and ignores processes,

MM deals only with processes

➜ Mapping of pages happens in the usual way, two-level page

table used

➜ In case of a page fault, a block of consecutive pages are read

Slide 34

PAGE REPLACEMENT ALGORITHM

Working Set:

➜ set of pages of a process which have been mapped into

memory

➜ described by (process specific) max and min size

➜ all processes start with the same limits, but may change over

time

➜ not hard bounds

➜ if page fault occurs and process has

• less than min pages: add page

• between min and max pages: add page if memory is not

scarce

• more than max pages: evict page from working set

➜ Working set of system is handled separately.

DAEMON THREADS TO MANAGE WORKING SETS 17

Slide 35

DAEMON THREADS TO MANAGE WORKING SETS

➜ Balance Set Manager: checks whether there are enough free

pages, starts Working Set Manager if required

➜ Working Set Manager: searches for processes which have

exceeded their maximum, didn’t have page faults recently and

removes some of their pages

Slide 36

A closer look at the free frames management:

Working
sets

Zero page needed (8)

Page read in (6)

Soft page fault (2)

Mod-
ified
page
list

Standby
page
list

Free
page
list

Zeroed
page
list

Bad
RAM
page
list

Top

Bottom

Modified
page
writer(4)

Dealloc(5) Zero
page
thread (7)

Page evicted from a working set (1) Process exist (3)

There are actually four separate lists which contain free

frames

➀ Modified Pages

➁ Standby Pages

➂ Free Pages

➃ Zeroed Pages

DAEMON THREADS TO MANAGE WORKING SETS 18



Slide 37

A closer look at the free frames management:

X

X

X

X

State Cnt WS PTOther Next

Clean

Dirty

Clean

Active

Clean

Dirty

Active

Dirty

Free

Free

Zeroed

Active



Active

Zeroed

13

12

11 20

10



8 4

7

6

5

4

3 6

2
1 14

0

14

Standby

Modified

Free

Zeroed

Page tables
Page frame database

Zeroed

List headers

9

DAEMON THREADS TO MANAGE WORKING SETS 19


