
1

User-level Mutual Exclusion

Lock-free?

• Avoid needing locking by using lock-free 

date structure

– Still need short atomic sequences

• compare-and-swap

• Lock-based data structure also need 

mutual exclusion to implement the lock 

primitive themselves.

How do we provide efficient 

mutual exclusion to kernel-

implemented threads at user-

level
• Interrupt disabling?

• Syscalls?

• Processor Instructions?

Optimistic Approach

• Assume the critical code runs atomically

– Atomic Sequence

• If an interrupt occurs, OS recovers such that 

atomicity is preserved

• Two basic mechanisms

– Rollback

• Only single memory location update

• Guarantee progress???

– Rollforward

How does the OS know what is 

an atomic sequence?

• Designated sequences

– Match well know sequences surrounding PC

• Matching takes time

• sequence may occur outside an atomic sequences

– Rollback might break code

– Rollforward okay

• Sequences can be inlined

• No overhead added to each sequence, overhead only on 
interruption

• Static Registration

– All sequences are registered at program 

startup

• No direct overhead to sequences themselves

• Limited number of sequences

– Reasonable to identify on interrupt

– No inlining



2

• Dynamic Registration

– Share a variable between kernel and user-

level, set it while in an atomic sequence

– Can inline, even synthesize sequences at 

runtime

– Adds direct overhead to each sequence

How to roll forward?

• Code re-writing

– Re-write instruction after sequence to call 

back to interrupt handler 

• Cache issues

• Cloning

– Two copies of each sequence

• normal copy

• modified copy that call back into interrupt 

handler

• On interrupt, map PC in normal sequence into 
PC in modified

• Mapping can be time consuming

– Inlining???

• Computed Jump

– Every sequence uses a computed jump at 

the end

• Normal sequence simply jmp to next instruction

• Interrupted sequence jumps to interrupt handler

• Adds a jump to every sequence

• Controlled fault

– Dummy instruction at end of each 

sequences

• NOP for normal case

• Fault for interrupt case

– Example is read from (in)accessible page

– Good for user-kernel privilege changes

– Still adds an extra instruction

Limiting Duration of 

ROllforward

• Watchdog

• Restriction on code so termination can 

be inspected for



3


