### File Management

COMP3231
Operating Systems



#### References

- Textbook
  - Tanenbaum, Chapter 6



#### **Files**

- Named repository for data
  - Potentially large amount of data
    - Beyond that available via virtual memory
      - (Except maybe 64-bit systems)
  - File lifetime is independent of process lifetime
  - Used to share data between processes
- Convenience
  - Input to applications is by means of a file
  - Output is saved in a file for long-term storage



### File Management

- File management system is considered part of the operating system
  - Manages a trusted, shared resource
  - Bridges the gap between:
    - low-level disk organisation (an array of blocks),
    - and the user's views (a stream or collection of records)
- Also includes tools outside the kernel
  - E.g. formatting, recovery, defrag, consistency, and backup utilities.



# Objectives for a File Management System

- Provide a convenient naming system for files
- Provide uniform I/O support for a variety of storage device types
  - Same file abstraction
- Provide a standardized set of I/O interface routines
  - Storage device drivers interchangeable
- Guarantee that the data in the file are valid

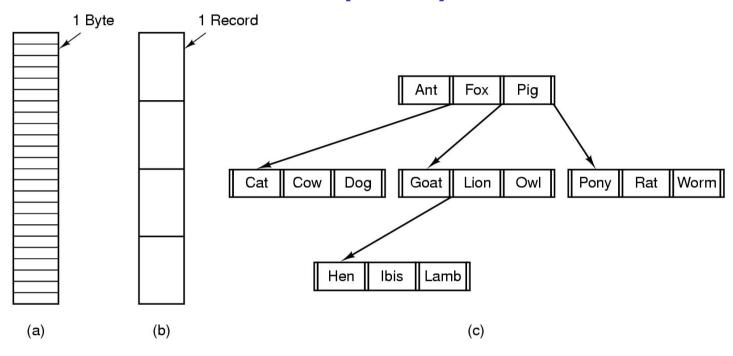
- Optimise performance
- Minimize or eliminate the potential for lost or destroyed data
- Provide I/O support and access control for multiple users
- Support system administration (e.g., backups)



#### File Names

- File system must provide a convenient naming scheme
  - Textual Names
  - May have restrictions
    - Only certain characters
      - E.g. no '/' characters
    - Limited length
    - Only certain format
      - E.g DOS, 8 + 3
  - Case (in)sensitive
  - Names may obey conventions (.c files or C files)
    - Interpreted by tools (UNIX)
    - Interpreted by operating system (Windows)




### File Naming

| Extension | Meaning                                           |
|-----------|---------------------------------------------------|
| file.bak  | Backup file                                       |
| file.c    | C source program                                  |
| file.gif  | Compuserve Graphical Interchange Format image     |
| file.hlp  | Help file                                         |
| file.html | World Wide Web HyperText Markup Language document |
| file.jpg  | Still picture encoded with the JPEG standard      |
| file.mp3  | Music encoded in MPEG layer 3 audio format        |
| file.mpg  | Movie encoded with the MPEG standard              |
| file.o    | Object file (compiler output, not yet linked)     |
| file.pdf  | Portable Document Format file                     |
| file.ps   | PostScript file                                   |
| file.tex  | Input for the TEX formatting program              |
| file.txt  | General text file                                 |
| file.zip  | Compressed archive                                |





## File Structure From OS's perspective



- Three kinds of files
  - byte sequence
  - record sequence
  - tree



#### File Structure

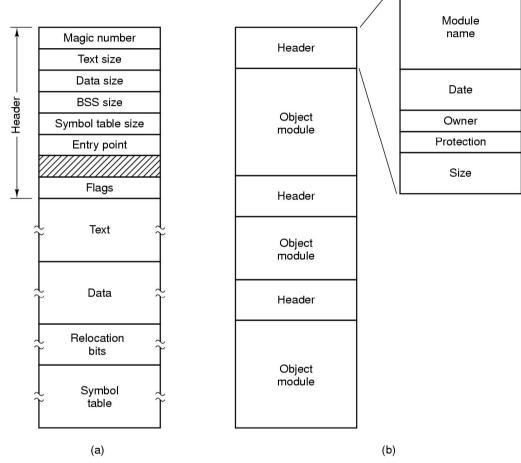
- Stream of Bytes
  - OS considers a file to be unstructured
  - Simplifies file management for the OS
  - Applications can impose their own structure
  - Used by UNIX,Windows, mostmodern OSes

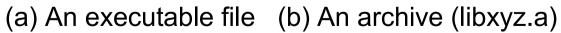
- Records
  - Collection of bytes treated as a unit
    - Example: employee record
  - Operations at the level of records (read\_rec, write\_rec)
  - File is a collection of similar records
  - OS can optimise operations on records



#### File Structure

- Tree of Records
  - Records of variable length
  - Each has an associated key
  - Record retrieval based on key
  - Used on some data processing systems (mainframes)





### File Types

- Regular files
- Directories
- Device Files
  - May be divided into
    - Character Devices stream of bytes
    - Block Devices
- Some systems distinguish between regular file types
  - ASCII text files, binary files
- At minimum, all systems recognise their own executable file format
  - May use a magic number



### File Types







#### File Access

- Sequential access
  - read all bytes/records from the beginning
  - cannot jump around, could rewind or back up
  - convenient when medium was mag tape
- Random access
  - bytes/records read in any order
  - essential for data base systems
  - read can be …
    - move file pointer (seek), then read or ...
    - each read specifies the file pointer



#### File Attributes

| Attribute           | Meaning                                               |
|---------------------|-------------------------------------------------------|
| Protection          | Who can access the file and in what way               |
| Password            | Password needed to access the file                    |
| Creator             | ID of the person who created the file                 |
| Owner               | Current owner                                         |
| Read-only flag      | 0 for read/write; 1 for read only                     |
| Hidden flag         | 0 for normal; 1 for do not display in listings        |
| System flag         | 0 for normal files; 1 for system file                 |
| Archive flag        | 0 for has been backed up; 1 for needs to be backed up |
| ASCII/binary flag   | 0 for ASCII file; 1 for binary file                   |
| Random access flag  | 0 for sequential access only; 1 for random access     |
| Temporary flag      | 0 for normal; 1 for delete file on process exit       |
| Lock flags          | 0 for unlocked; nonzero for locked                    |
| Record length       | Number of bytes in a record                           |
| Key position        | Offset of the key within each record                  |
| Key length          | Number of bytes in the key field                      |
| Creation time       | Date and time the file was created                    |
| Time of last access | Date and time the file was last accessed              |
| Time of last change | Date and time the file has last changed               |
| Current size        | Number of bytes in the file                           |
| Maximum size        | Number of bytes the file may grow to                  |



#### Possible file attributes

### **Typical File Operations**

- 1. Create
- 2. Delete
- 3. Open
- 4. Close
- 5. Read
- 6. Write

- 7. Append
- 8. Seek
- 9. Get attributes
- 10.Set Attributes
- 11.Rename



### An Example Program Using File System Calls (1/2)

```
/* File copy program. Error checking and reporting is minimal. */
#include <sys/types.h>
                                            /* include necessary header files */
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char *argv[]);
                                            /* ANSI prototype */
#define BUF SIZE 4096
                                            /* use a buffer size of 4096 bytes */
#define OUTPUT MODE 0700
                                            /* protection bits for output file */
int main(int argc, char *argv[])
     int in fd, out fd, rd count, wt count;
     char buffer[BUF SIZE];
     if (argc != 3) exit(1);
                                            /* syntax error if argc is not 3 */
```



### An Example Program Using File System Calls (2/2)

```
/* Open the input file and create the output file */
in fd = open(argv[1], O RDONLY); /* open the source file */
                      /* if it cannot be opened, exit */
if (in fd < 0) exit(2);
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out fd < 0) exit(3);
                       /* if it cannot be created, exit */
/* Copy loop */
while (TRUE) {
     rd count = read(in fd, buffer, BUF SIZE); /* read a block of data */
                                      /* if end of file or error, exit loop */
if (rd count <= 0) break:
     wt count = write(out fd, buffer, rd count); /* write data */
     if (wt count \leq 0) exit(4); /* wt count \leq 0 is an error */
/* Close the files */
close(in fd);
close(out fd);
if (rd count == 0)
                                      /* no error on last read */
    exit(0):
else
    exit(5);
                                      /* error on last read */
```



## File Organisation and Access Programmer's Perspective

 Given an operating system supporting unstructured files that are a stream-of-bytes,

how should one organise the contents of the files?



## File Organisation and Access Programmer's Perspective

- Performance considerations:
  - File system performance affects overall system performance
  - Organisation of the file system affects performance
  - File organisation (data layout) affects performance
    - depends on access patterns

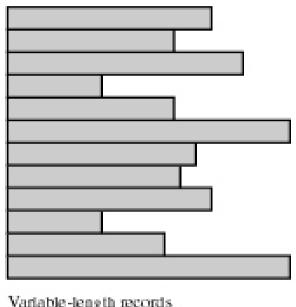
- Possible access patterns:
  - Read the whole file
  - Read individual blocks or records from a file
  - Read blocks or records preceding or following the current one
  - Retrieve a set of records
  - Write a whole file sequentially
  - Insert/delete/update records in a file
  - Update blocks in a file



### Criteria for File Organization

- Rapid access
  - Needed when accessing a single record
  - Not needed for batch mode
- Ease of update
  - File on CD-ROM will not be updated, so this is not a concern
- Economy of storage
  - Should be minimum redundancy in the data
  - Redundancy can be used to speed access such as an index
- Simple maintenance
- Reliability




#### Classic File Organisations

- There are many ways to organise a file's contents, here are just a few basic methods
  - Unstructured Stream (Pile)
  - Sequential
  - Indexed Sequential
  - Direct or Hashed



#### **Unstructured Stream**

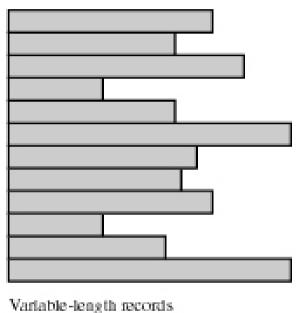
- Data are collected in the order they arrive
- Purpose is to accumulate a mass of data and save it
- Records may have different fields
- No structure
- Record access is by exhaustive search



Variable-length records Variable set of fields Chronological order

(a) Pile File




#### Unstructured Stream Performance

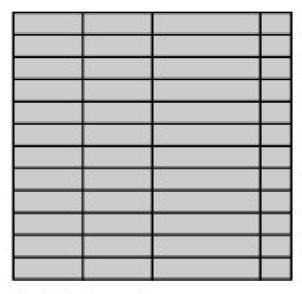
#### Update

- Same size record okay
- Variable size poor

#### Retrieval

- Single record poor
- Subset poor
- Exhaustive okay




Variable-length record: Variable set of fields Chronological order

(a) Pile File



#### The Sequential File

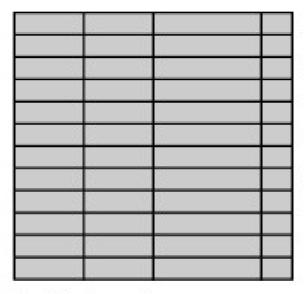
- Fixed format used for records
- Records are the same length
- Field names and lengths are attributes of the file
- One field is the key field
  - Uniquely identifies the record
  - Records are stored in key sequence



Fixed-length records

Fixed set of fields in fixed order

Sequential order based on key field


(b) Sequential File



#### The Sequential File

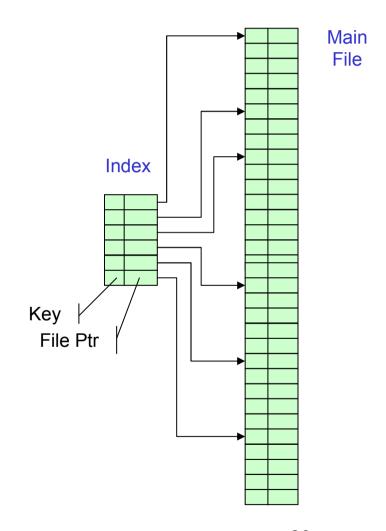
#### Update

- Same size record good
- Variable size No
- Retrieval
  - Single record poor
  - Subset poor
  - Exhaustive okay



Fixed-length records

Fixed set of fields in fixed order


Sequential order based on key field

(b) Sequential File



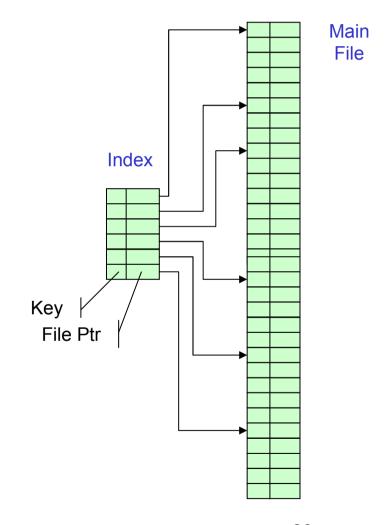
#### Indexed Sequential File

- Index provides a lookup capability to quickly reach the vicinity of the desired record
  - Contains key field and a pointer to the main file
  - Indexed is searched to find highest key value that is equal or less than the desired key value
  - Search continues in the main file at the location indicated by the pointer





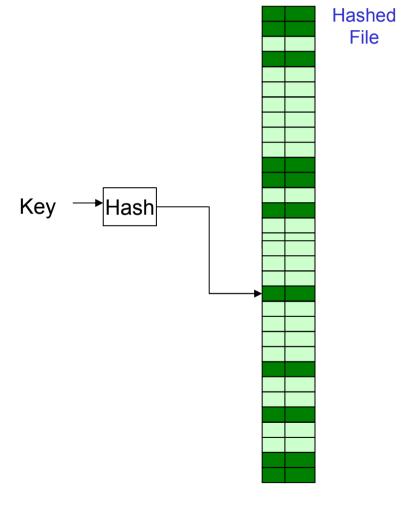
# Comparison of sequential and indexed sequential lookup


- Example: a file contains 1 million records
- On average 500,00 accesses are required to find a record in a sequential file
- If an index contains 1000 entries, it will take on average 500 accesses to find the key, followed by 500 accesses in the main file. Now on average it is 1000 accesses



### Indexed Sequential File

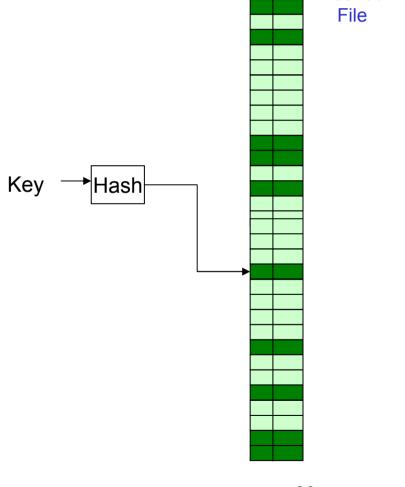
#### Update


- Same size record good
- Variable size No
- Retrieval
  - Single record good
  - Subset poor
  - Exhaustive okay





#### The Direct, or Hashed File


- Key field required for each record
- Key maps directly or via a hash mechanism to an address within the file
- Directly access a block at a the known address





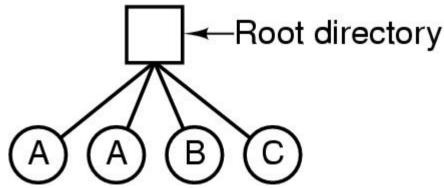
#### The Direct, or Hashed File

- Update
  - Same size record good
  - Variable size No
    - Fixed sized records used
- Retrieval
  - Single record excellent
  - Subset poor
  - Exhaustive poor





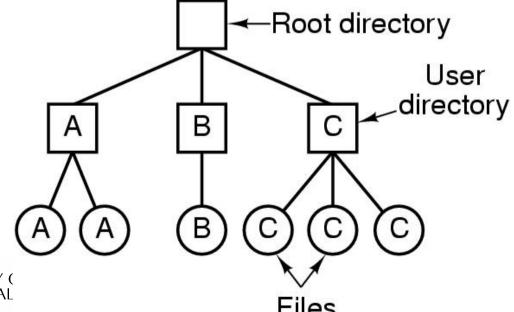
Hashed


#### File Directories

- Contains information about files
  - Attributes
  - Location
  - Ownership
- Directory itself is a file owned by the operating system
- Provides mapping between file names and the files themselves

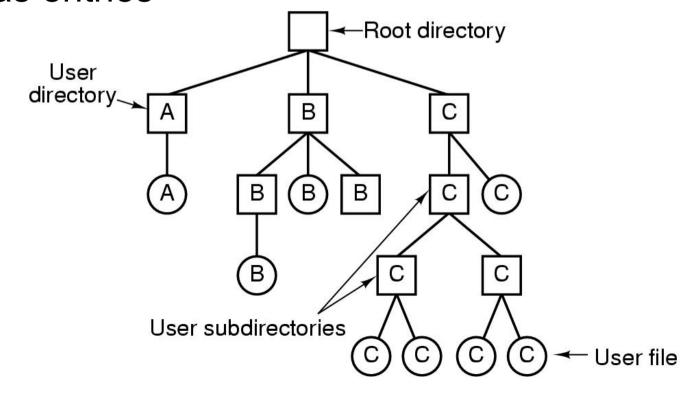


### Simple Structure for a Directory


- List of entries, one for each file
- Sequential file with the name of the file serving as the key
- Provides no help in organising the files
- Forces user to be careful not to use the same name for two different files





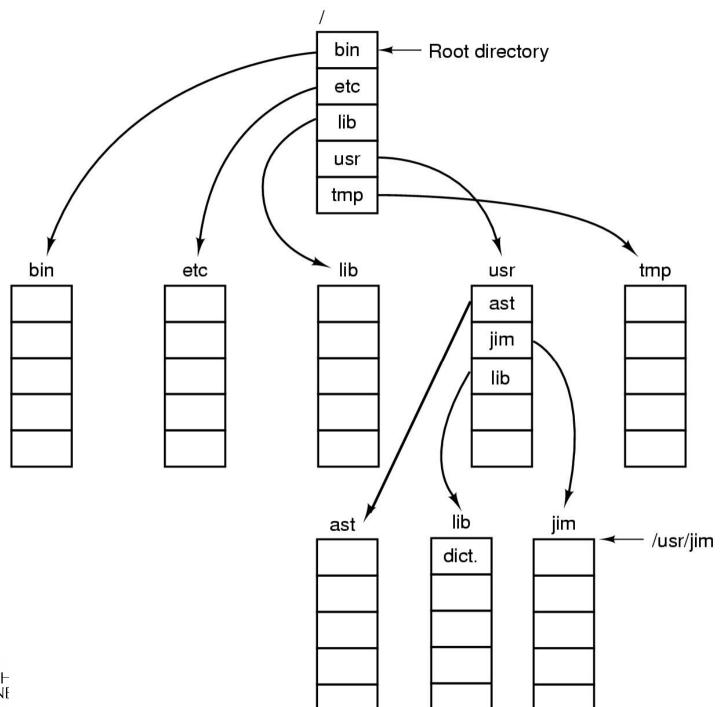

# Two-level Scheme for a Directory

- One directory for each user and a master directory
- Master directory contains entry for each user
  - Provides access control information
- Each user directory is a simple list of files for that user
- Still provides no help in structuring collections of files



# Hierarchical, or Tree-Structured Directory

- Master directory with user directories underneath it
- Each user directory may have subdirectories and files as entries






## Hierarchical, or Tree-Structured Directory

- Files can be located by following a path from the root, or master, directory down various branches
  - This is the absolute pathname for the file
- Can have several files with the same file name as long as they have unique path names





# Current Working Directory

- Always specifying the absolute pathname for a file is tedious!
- Introduce the idea of a working directory
  - Files are referenced relative to the working directory
- Example: cwd = /home/kevine
   .profile = /home/kevine/.profile



# Relative and Absolute Pathnames

- Absolute pathname
  - A path specified from the root of the file system to the file
- A Relative pathname
  - A pathname specified from the cwd
- Note: '.' (dot) and '..' (dotdot) refer to current and parent directory

```
Example: cwd = /home/kevine
../../etc/passwd
/etc/passwd
../kevine/../../etc/passwd
Are all the same file
```



# **Typical Directory Operations**

1. Create

5. Readdir

2. Delete

6. Rename

3. Opendir

7. Link

4. Closedir

8. Unlink



# Nice properties of UNIX naming

- Simple, regular format
  - Names referring to different servers, objects, etc., have the same syntax.
    - Regular tools can be used where specialised tools would be otherwise needed.
- Location independent
  - Objects can be distributed or migrated, and continue with the same names.



# An example of a bad naming convention

From, Rob Pike and Peter Weinberger,
 "The Hideous Name", Bell Labs TR

UCBVAX::SYS\$DISK:[ROB.BIN]CAT\_V.EXE;13



## File Sharing

- In multiuser system, allow files to be shared among users
- Two issues
  - Access rights
  - Management of simultaneous access



#### None

- User may not know of the existence of the file
- User is not allowed to read the user directory that includes the file
- Knowledge
  - User can only determine that the file exists and who its owner is



#### Execution

 The user can load and execute a program but cannot copy it

#### Reading

 The user can read the file for any purpose, including copying and execution

#### Appending

 The user can add data to the file but cannot modify or delete any of the file's contents



- Updating
  - The user can modify, deleted, and add to the file's data. This includes creating the file, rewriting it, and removing all or part of the data
- Changing protection
  - User can change access rights granted to other users
- Deletion
  - User can delete the file



- Owners
  - Has all rights previously listed
  - May grant rights to others using the following classes of users
    - Specific user
    - User groups
    - All for public files



# Case Study: UNIX Access Permissions

```
total 1704
             3 kevine
                       kevine
                                      4096 Oct 14 08:13 .
drwxr-x---
             3 kevine
                       kevine
                                      4096 Oct 14 08:14 ...
drwxr-x---
             2 kevine kevine
drwxr-x---
                                      4096 Oct 14 08:12 backup
             1 kevine kevine
                                    141133 Oct 14 08:13 eniac3.jpg
              1 kevine kevine
                                   1580544 Oct 14 08:13 wkl1.ppt
```

First letter: file type

**d** for directories

- for regular files)
- Three user categories
   user, group, and other



#### **UNIX Access Permissions**

```
total 1704
             3 kevine
                       kevine
                                     4096 Oct 14 08:13 .
drwxr-x---
             3 kevine
                       kevine
                                     4096 Oct 14 08:14 ...
drwxr-x---
             2 kevine kevine
                                     4096 Oct 14 08:12 backup
drwxr-x---
                                   141133 Oct 14 08:13 eniac3.jpg
             1 kevine kevine
             1 kevine
                      kevine
                                  1580544 Oct 14 08:13 wk11.ppt
```

Three access rights per category

read, write, and execute

#### drwxrwxrwx

user

group

other



### **UNIX Access Permissions**

- Execute permission for directory?
  - Permission to access files in the directory
- To list a directory requires read permissions
- What about drwxr-x-x?



#### **UNIX Access Permissions**

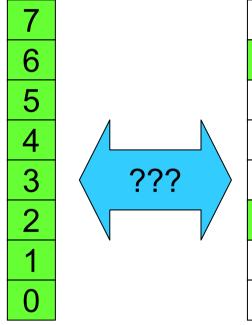
- Shortcoming
  - The three user categories a rather coarse
- Problematic example
  - Joe owns file foo.bar
  - Joe wishes to keep his file private
    - Inaccessible to the general public
  - Joe wishes to give Bill read and write access
  - Joe wishes to give Peter read-only access
  - How???????

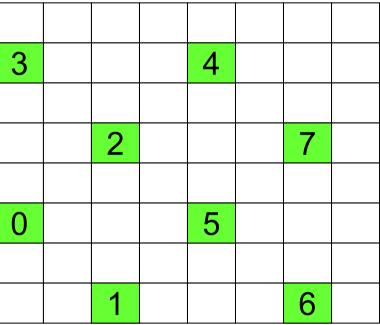


### Simultaneous Access

- Most Oses provide mechanisms for users to manage concurrent access to files
  - Example: lockf(), flock() system calls
- Typically
  - User may lock entire file when it is to be updated
  - User may lock the individual records during the update
- Mutual exclusion and deadlock are issues for shared access




# File Management II


COMP3231
Operating Systems



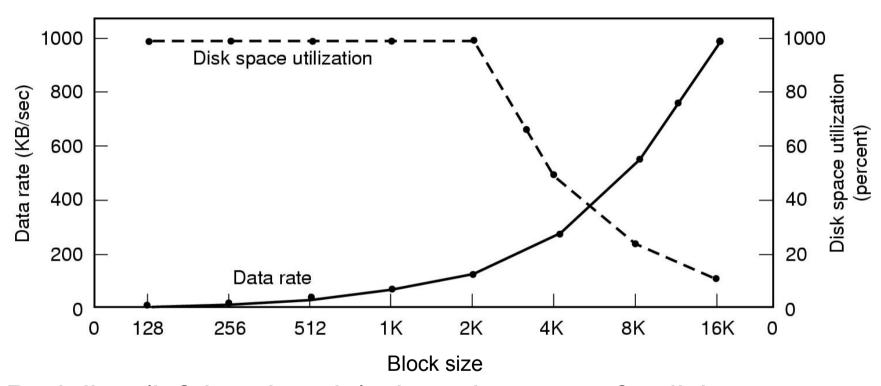
# Implementing Files

File
8 logical blocks





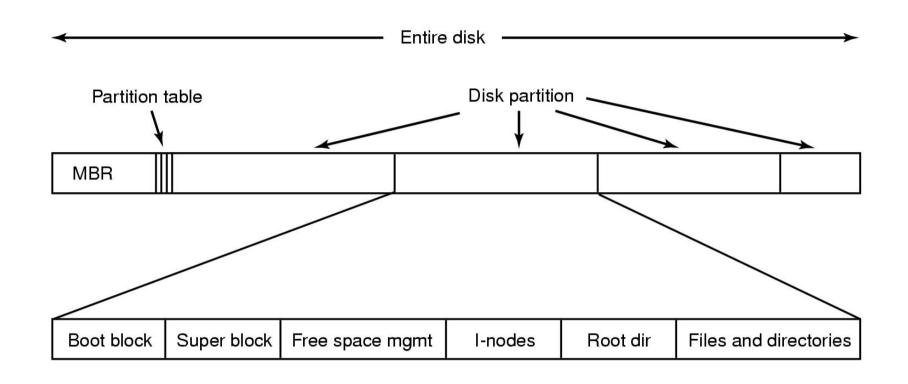
Disk




## Trade-off in physical block size

- Sequential Access
  - The larger the block size, the fewer I/O operation required
- Random Access
  - The larger the block size, the more unrelated data loaded.
  - Spatial locality of access improves the situation
- Choosing the an appropriate block size is a compromise




## **Example Block Size Trade-off**



- Dark line (left hand scale) gives data rate of a disk
- Dotted line (right hand scale) gives disk space efficiency
  - All files 2KB (an approximate median file size)



# File System Implementation



#### A possible file system layout



# Implementing Files

- The file system must keep track of
  - which blocks belong to which files.
  - in what order the blocks form the file
  - which blocks are free for allocation
- Given a logical region of a file, the file system must identify the corresponding block(s) on disk.
  - Stored in file system metadata
    - file allocation table (FAT), directory, I-node
- Creating and writing files allocates blocks on disk
  - How?



# Allocation Strategies

#### Preallocation

- Need the maximum size for the file at the time of creation
- Difficult to reliably estimate the maximum potential size of the file
- Tend to overestimated file size so as not to run out of space
- Dynamic Allocation
  - Allocated in portions as needed

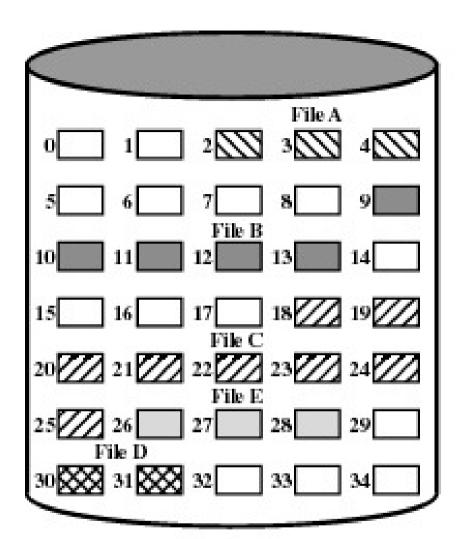


### **Portion Size**

#### Extremes

- Portion size = length of file (contiguous allocation)
- Portion size = block size

#### Tradeoffs

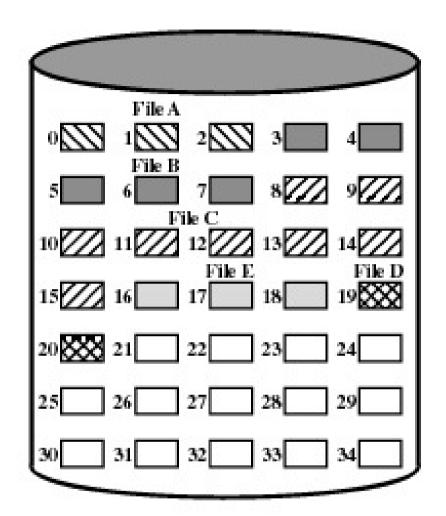

- Contiguity increases performance for sequential operations
- Many small portions increase the size of the *metadata* required to book-keep components of a file, free-space, etc.
- Fixed-sized portions simplify reallocation of space
- Variable-sized portions minimise internal fragmentation losses



#### Methods of File Allocation

- Contiguous allocation
  - Single set of blocks is allocated to a file at the time of creation
  - Only a single entry in the directory entry
    - Starting block and length of the file
- External fragmentation will occur





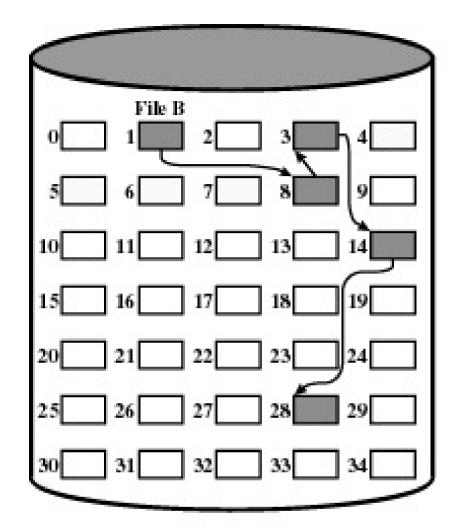

#### directory

| File Name | Start Block | Length |
|-----------|-------------|--------|
| File A    | 2           | 3      |
| File B    | 9           | 5      |
| File C    | 18          | 8      |
| File D    | 30          | 2      |
| File E    | 26          | 3      |

• Eventually, we will need compaction to reclaim unusable disk space.






#### directory

| File Name | Start Block | Length |
|-----------|-------------|--------|
| File A    | 0           | 3      |
| File B    | 3           | 5      |
| File C    | 8           | 8      |
| File D    | 19          | 2      |
| File E    | 16          | 3      |

### Methods of File Allocation

- Chained (or linked list) allocation
- Allocation on basis of individual block
  - Each block contains a pointer to the next block in the chain
  - Only single entry in a directory entry
    - Starting block and length of file
- No external fragmentation
- Best for sequential files
  - Poor for random access
- No accommodation of the principle of locality
  - Blocks end up scattered across the disk





directory

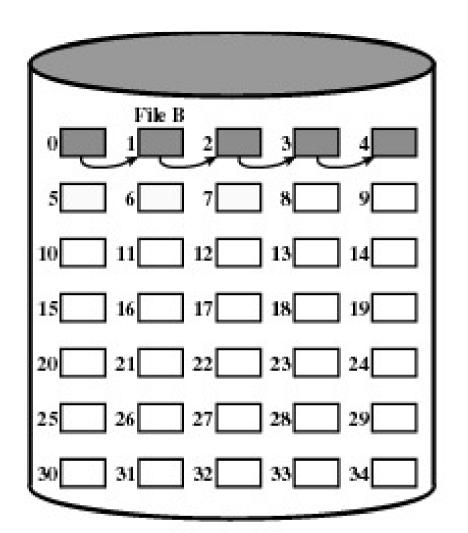

| File Name | Start Block | Length |
|-----------|-------------|--------|
| •••       |             |        |
| File B    | 1           | 5      |
| • • • •   |             |        |

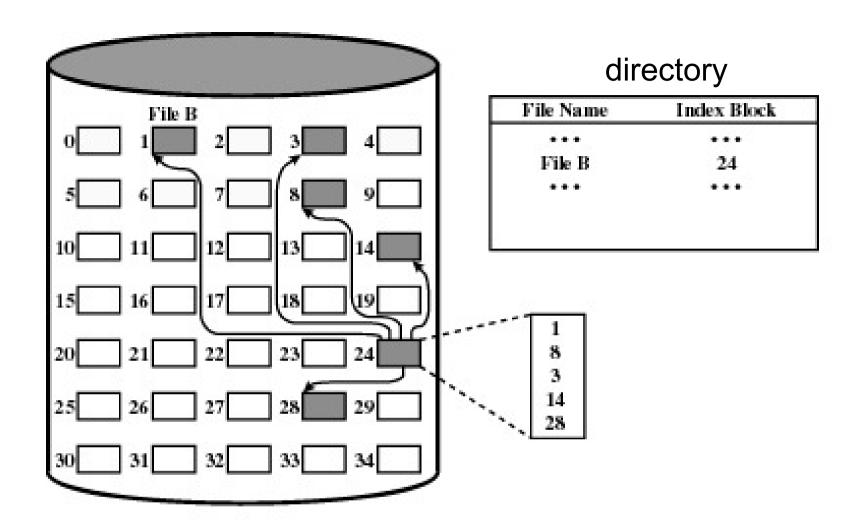


Figure 12.9 Chained Allocation

• To improve performance, we can run a defragmentation utility to consolidate files.






#### directory

| File Name | Start Block | Length |
|-----------|-------------|--------|
|           |             |        |
| File B    | 0           | 5      |
|           |             |        |

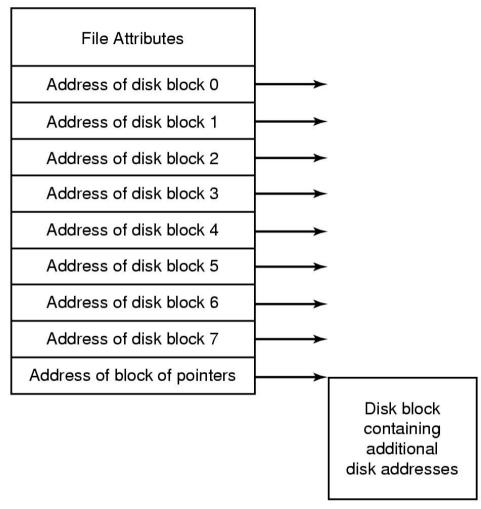
### Methods of File Allocation

- Indexed allocation
  - File allocation table contains a separate onelevel index for each file
  - The index has one entry for each portion allocated to the file
  - The file allocation table contains block number for the index





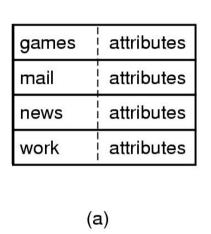


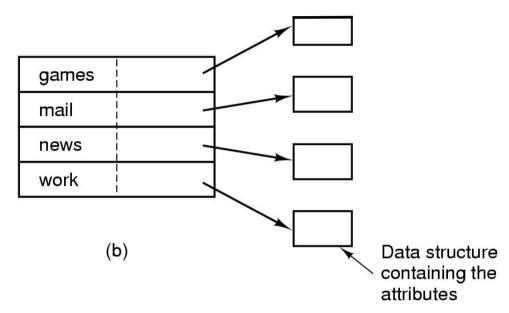


Figure 12.12 Indexed Allocation with Variable-Length Portions
NEW SOUTH WALES

#### Indexed Allocation

- Supports both sequential and direct access to the file
- Portions
  - Block sized
    - Eliminates external fragmentation
  - Variable sized
    - Improves contiguity
    - Reduces index size
- Most common of the three forms of file allocation




### **UNIX I-node**





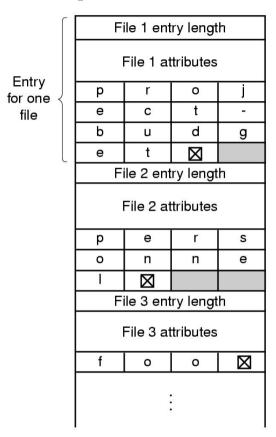


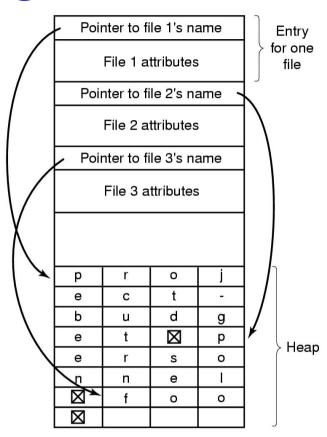

# Implementing Directories





- Simple fixed-sized directory entries
- disk addresses and attributes in directory entry
  - DOS/Windows
- (b) Directory in which each entry just refers to an i-node
  - UNIX





# Fixed Size Directory Entries

- Either too small
  - Example: DOS 8+3 characters
- Waste too much space
  - Example: 255 characters per file name

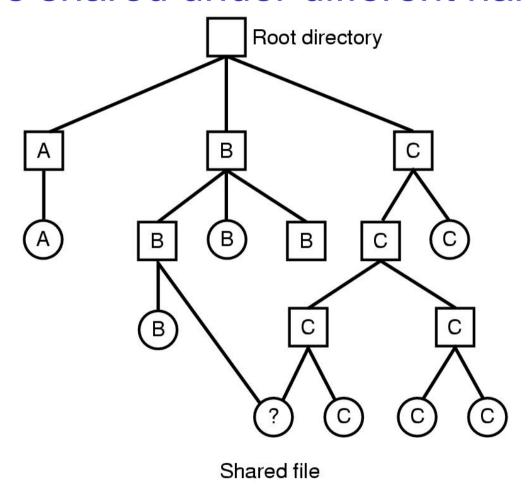


# Implementing Directories





- Two ways of handling long file names in directory
  - (a) In-line
  - (b) In a heap




## Implementing Directories

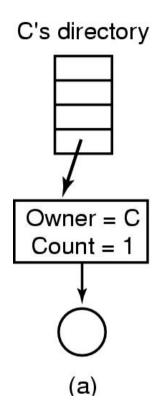
- Free variable length entries can create external fragmentation in directory blocks
  - Can compact when block is in RAM

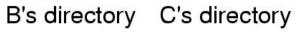


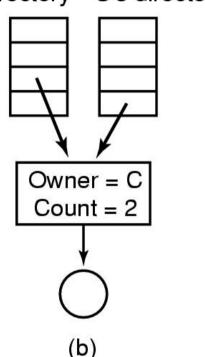
# Shared Files Files shared under different names



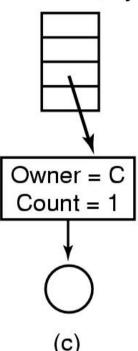
File system containing a shared file





# Implementing Shared Files

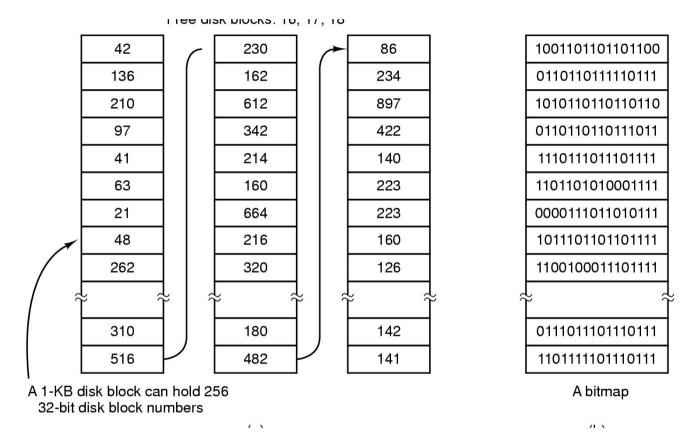

- Copy entire directory entry (including file attributes)
  - Updates to shared file not seen by all parties
  - Not useful
- Keep attributes separate (in I-node) and create a new entry (name) that points to the attributes (hard link)
  - Updates visible
  - If one link remove, the other remains (ownership is an issue)
- Create a special "LINK" file that contains the pathname of the shared file (symbolic link, shortcut).
  - File removal leaves dangling links
  - Not as efficient to access
  - Can point to names outside the particular file system
  - Can transparently replace the file with another




### **Shared Files**












- (a) Situation prior to linking
- (b) After the link is created
- (c)After the original owner removes the file
  THE UNIVERSITY OF NEW SOUTH WALES

# Free Disk Space Management



- (a) Storing the free list on a linked list
- (b) A bit map



### Bit Tables

- Individual bits in a bit vector flags used/free blocks
- 16GB disk with 512-byte blocks →4MB table
- May be too large to hold in main memory
- Expensive to search
  - But may use a two level table
- Concentrating (de)allocations in a portion of the bitmap has desirable effect of concentrating access
- Simple to find contiguous free space




### Free Block List

- List of all unallocated blocks
- Manage as LIFO or FIFO on disk with ends in main memory
- Background jobs can re-order list for better contiguity
- Store in free blocks themselves
  - Does not reduce disk capacity



### Quotas



Quotas for keeping track of each user's disk use

