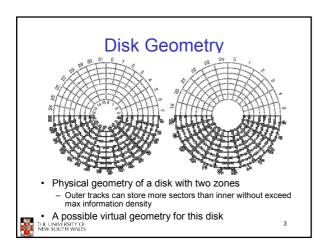
Disk I/O Management

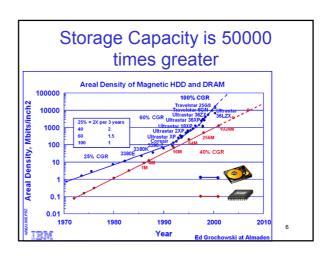
Chapter 5

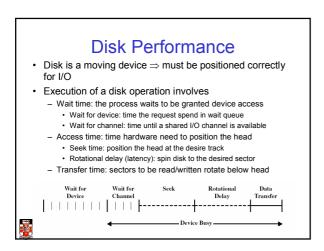


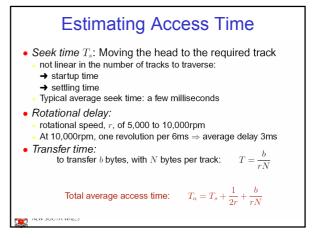
Disk Management

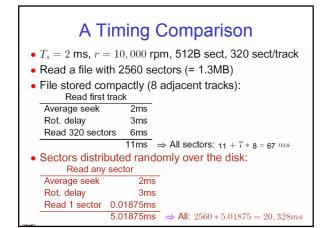
- Management and ordering of disk access requests is important:
 - Huge speed gap between memory and disk
 - Disk throughput is extremely sensitive to
 - Request order ⇒ Disk Scheduling
 - Placement of data on the disk ⇒ file system design
 - Disk scheduler must be aware of disk geometry

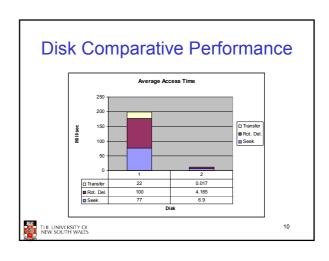
2

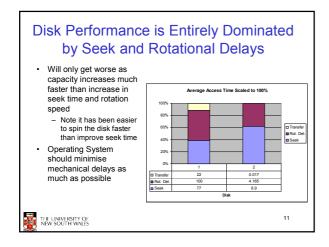


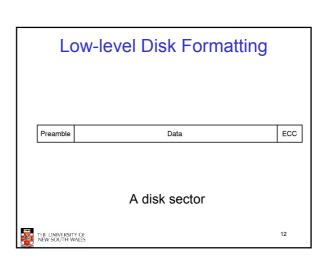

Evolution of Disk Hardware		
Paramoter	IBM 360-KB floppy disk	WD 18300 hard dis!
Number of cylinders	40	10801
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	aso Ka	18.3 02
Spak timo (sojenent sylinders)	6 meac	osem 2.0
Sook timo (eventgo ceso)	77 mess:	6.9 macc
Relation time	200 maso	8.32 maec
Moter stopfetert ficts	250 meas	20 sec
Time to transfer 1 sector	22 mags	17 µaps

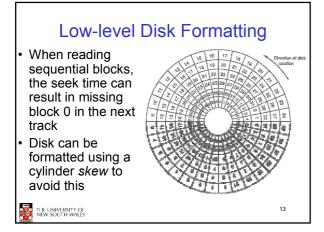

Things to Note

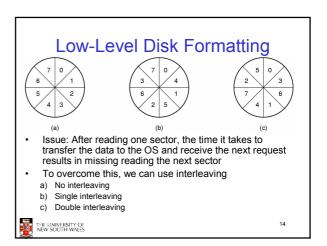

- Average seek time is approx 12 times better
- · Rotation time is 24 times faster
- Transfer time is 1300 times faster
 - Most of this gain is due to increase in density
- Represents a gradual engineering improvement











iPod Concerns

Low-Level Disk Formatting

 Modern drives overcome interleaving type issues by simply reading the entire track (or part thereof) into the on-disk controller and caching it.

- jogging with iPod

Dawer Heere

- Smaller iPods

Power Usage

- Long flight with iPod

Acoustic

- Keep iPod quiet

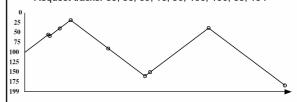
Size

Cache

16

Disk Arm Scheduling Algorithms

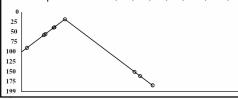
- Time required to read or write a disk block determined by 3 factors
 - 1. Seek time
 - 2. Rotational delay
 - 3. Actual transfer time
- Seek time dominates
- For a single disk, there will be a number of I/O requests
 - Processing them in random order leads to worst possible performance



17

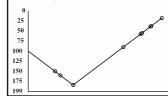
First-in, First-out (FIFO)

- Process requests as they come
- Fair (no starvation)
- · Good for a few processes with clustered requests
- Deteriorates to random if there are many processes


Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

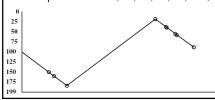
Shortest Seek Time First

- · Select request that minimises the seek time
- · Generally performs much better than FIFO
- · May lead to starvation


Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

Elevator Algorithm (SCAN)

- · Move head in one direction
 - Services requests in track order until it reaches the last track, then reverses direction
- · Better than FIFO, usually worse than SSTF
- · Avoids starvation
- · Makes poor use of sequential reads (on down-scan)
- · Less Locality

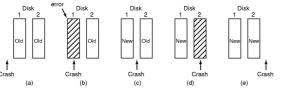

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

Modified Elevator (Circular SCAN, C-SCAN)

- Like elevator, but reads sectors in only one direction
 When reaching last track, go back to first track non-stop
- · Better locality on sequential reads
- · Better use of read ahead cache on controller
- · Reduces max delay to read a particular sector

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

Error Handling



- a) A disk track with a bad sector
- b) Substituting a spare for the bad sector
- c) Shifting all the sectors to bypass the bad one
- Bad blocks are usually handled transparently by the on-disk controller

22

Implementing Stable Storage

- Use two disks to implement stable storage
 - Problem is when a write (update) corrupts old version, without completing write of new version
 - Solution: Write to one disk first, then write to second after completion of first

23