
1

1

Deadlocks

Chapter 6

6.1. Resources

6.2. Introduction to deadlocks

6.3. The ostrich algorithm

6.4. Deadlock detection and recovery

6.5. Deadlock avoidance

6.6. Deadlock prevention

6.7. Other issues

2

Learning Outcomes

• Understand what deadlock is and how it
can occur when giving mutually exclusive

access to multiple resources.

• Understand several approaches to
mitigating the issue of deadlock in

operating systems.

– Including deadlock detection and recovery,

deadlock avoidance, and deadlock

prevention.

3

Resources

• Examples of computer resources

– printers

– tape drives

– Tables in a database

• Processes need access to resources in reasonable

order

• Preemptable resources

– can be taken away from a process with no ill effects

• Nonpreemptable resources

– will cause the process to fail if taken away
4

Resources & Deadlocks

• Suppose a process holds resource A and requests

resource B

– at same time another process holds B and requests A

– both are blocked and remain so - Deadlocked

• Deadlocks occur when …

– processes are granted exclusive access to devices,
locks, tables, etc..

– we refer to these entities generally as resources

5

Resource Access

• Sequence of events required to use a resource

1. request the resource

2. use the resource

3. release the resource

• Must wait if request is denied

– requesting process may be blocked

– may fail with error code

6

Two example resource usage patterns

semaphore res_1, res_2;

void proc_A() {

down(&res_1);

down(&res_2);

use_both_res();

up(&res_2);

up(&res_1);

}

void proc_B() {

down(&res_1);

down(&res_2);

use_both_res();

up(&res_2);

up(&res_1);

}

semaphore res_1, res_2;

void proc_A() {

down(&res_1);

down(&res_2);

use_both_res();

up(&res_2);

up(&res_1);

}

void proc_B() {

down(&res_2);

down(&res_1);

use_both_res();

up(&res_1);

up(&res_2);

}

2

7

Introduction to Deadlocks

• Formal definition :
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause

• Usually the event is release of a currently held
resource

• None of the processes can …
– run

– release resources

– be awakened

8

Four Conditions for Deadlock

1. Mutual exclusion condition
• each resource assigned to 1 process or is available

2. Hold and wait condition
• process holding resources can request additional

3. No preemption condition
• previously granted resources cannot forcibly taken

away

4. Circular wait condition
• must be a circular chain of 2 or more processes

• each is waiting for resource held by next member of
the chain

9

Deadlock Modeling

• Modeled with directed graphs

– resource R assigned to process A

– process B is requesting/waiting for resource S

– process C and D are in deadlock over resources T
and U

10

A B C

Deadlock Modeling

How deadlock occurs

11

Deadlock Modeling

How deadlock can be avoided

(o) (p) (q)

12

Deadlock

Strategies for dealing with Deadlocks

1. just ignore the problem altogether

2. detection and recovery

3. dynamic avoidance

• careful resource allocation

4. prevention

• negating one of the four necessary conditions

3

13

Approach 1: The Ostrich Algorithm

• Pretend there is no problem

• Reasonable if
– deadlocks occur very rarely

– cost of prevention is high
• Example of “cost”, only one process runs at a time

• UNIX and Windows takes this approach for
some of the more complex resource
relationships to manage

• It’s a trade off between
– Convenience (engineering approach)

– Correctness (mathematical approach)

14

Approach 2: Detection and

Recovery

• Need a method to determine if a system is
deadlocked.

• Assuming deadlocked is detected, we

need a method of recovery to restore
progress to the system.

15

Approach 2

Detection with One Resource of Each Type

• Note the resource ownership and requests

• A cycle can be found within the graph, denoting
deadlock

16

What about resources with

multiple units?
• We need an approach for dealing with

resources that consist of more than a

single unit.

17

Detection with Multiple Resources of Each

Type

Data structures needed by deadlock detection
algorithm

18

Note the following invariant

Sum of current resource allocation +
resources available = resources that exist

jj

n

i

ij EAC =+∑
=1

4

19

Detection with Multiple Resources of Each

Type

An example for the deadlock detection algorithm

20

Detection Algorithm

1. Look for an unmarked process Pi, for
which the i-th row of R is less than or

equal to A

2. If found, add the i-th row of C to A, and
mark Pi. Go to step 1

3. If no such process exists, terminate.

Remaining processes are deadlocked

21

Example Deadlock Detection

)1324(=E)0012(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

22

Example Deadlock Detection

)1324(=E)0012(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

23

Example Deadlock Detection

)1324(=E)0222(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

24

Example Deadlock Detection

)1324(=E)0222(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

5

25

Example Deadlock Detection

)1324(=E)1224(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

26

Example Deadlock Detection

)1324(=E)1224(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

27

Example Deadlock Detection

)1324(=E)1224(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

28

Example Deadlock Detection

)1324(=E)1324(=A

=

0210

1002

0100

C

=

0012

0101

1002

R

29

Example Deadlock Detection

• Algorithm terminates with no unmarked
processes

– We have no dead lock

30

Example 2: Deadlock Detection

• Suppose, P3 needs a CD-ROM as well as
2 Tapes and a Plotter

)1324(=E)0012(=A

=

0210

1002

0100

C

=

1012

0101

1002

R

6

31

Recovery from Deadlock

• Recovery through preemption

– take a resource from some other process

– depends on nature of the resource

• Recovery through rollback

– checkpoint a process periodically

– use this saved state

– restart the process if it is found deadlocked

32

Recovery from Deadlock

• Recovery through killing processes

– crudest but simplest way to break a deadlock

– kill one of the processes in the deadlock cycle

– the other processes get its resources

– choose process that can be rerun from the

beginning

33

Approach 3

Deadlock Avoidance

• Instead of detecting deadlock, can we
simply avoid it?

– YES, but only if enough information is

available in advance.

• Maximum number of each resource required

34

Deadlock Avoidance
Resource Trajectories

Two process resource trajectories

35

Safe and Unsafe States

• A state is safe if

– The system is not deadlocked

– There exists a scheduling order that results in

every process running to completion, even if

they all request their maximum resources

immediately

36

Safe and Unsafe States

Demonstration that the state in (a) is safe

(a) (b) (c) (d) (e)

Note: We have 10 units
of the resource

7

37

Safe and Unsafe States

Demonstration that the state in b is not safe

(a) (b) (c) (d)

A requests one extra unit resulting in (b)

38

Safe and Unsafe State

• Unsafe states are not necessarily deadlocked

– With a lucky sequence, all processes may complete

– However, we cannot guarantee that they will
complete (not deadlock)

• Safe states guarantee we will eventually

complete all processes

• Deadlock avoidance algorithm

– Only grant requests that result in safe states

39

Bankers Algorithm
• Modelled on a Banker with Customers

– The banker has a limited amount of money to loan customers

• Limited number of resources

– Each customer can borrow money up to the customer’s credit

limit

• Maximum number of resources required

• Basic Idea

– Keep the bank in a safe state

• So all customers are happy even if they all request to borrow up to

their credit limit at the same time.

– Customers wishing to borrow such that the bank would enter an

unsafe state must wait until somebody else repays their loan
such that the the transaction becomes safe.

40

The Banker's Algorithm for a Single Resource

• Three resource allocation states
– safe

– safe

– unsafe

(a) (b) (c)

41

Banker's Algorithm for Multiple Resources

Example of banker's algorithm with multiple
resources

System should start in safe state!

42

Banker's Algorithm for Multiple Resources

Example of banker's algorithm with multiple
resources

Should we allow a request by B 1 scanner to
succeed??

8

43

Banker's Algorithm for Multiple Resources

Example of banker's algorithm with multiple
resources

Should we allow a request by B and E for 1 scanner
to succeed?? 44

Bankers Algorithm is not

commonly used in practice
• It is difficult (sometime impossible) to know

in advance

– the resources a process will require

– the number of processes in a dynamic system

45

Approach 4: Deadlock Prevention

• Resource allocation rules prevent
deadlock by prevent one of the four

conditions required for deadlock from

occurring

– Mutual exclusion

– Hold and wait

– No preemption

– Circular Wait

46

Approach 4

Deadlock Prevention
Attacking the Mutual Exclusion Condition

• Not feasible in general

– Some devices/resource are intrinsically not

shareable.

47

Attacking the Hold and Wait

Condition
• Require processes to request resources before starting

– a process never has to wait for what it needs

• Issues
– may not know required resources at start of run

• ⇒ not always possible

– also ties up resources other processes could be using

• Variations:
– process must give up all resources if it would block hold a resource

– then request all immediately needed

– prone to starvation

48

Attacking the No Preemption Condition

• This is not a viable option

• Consider a process given the printer

– halfway through its job

– now forcibly take away printer

– !!??

9

49

Attacking the Circular Wait Condition

• Numerically ordered resources

(a) (b)

50

Attacking the Circular Wait

Condition
• The displayed deadlock

cannot happen
– If A requires 1, it must

acquire it before
acquiring 2

– Note: If B has 1, all
higher numbered
resources must be free or
held by processes who
doesn’t need 1

• Resources ordering is a
common technique in
practice!!!!!

1 2

A B

51 52

Summary of approaches to

deadlock prevention
Condition

• Mutual Exclusion

• Hold and Wait

• No Preemption

• Circular Wait

Approach

• Not feasible

• Request resources

initially

• Take resources away

• Order resources

53

Starvation
• Starvation is where the overall system makes progress, but

one or more processes never make progress.

– Example: An algorithm to allocate a resource may be to give to
shortest job first

– Works great for multiple short jobs in a system

– May cause long job to be postponed indefinitely, even though ready
and not waiting for a resource.

• One solution:
– First-come, first-serve policy

