Q1.C Q2.D Q3.C Q4.B Q5.A Q6.D Q7.B
Q8. $\mathrm{ONE}=182, \mathrm{TEN}=728 \quad$ (you can try values for E one by one)
Q9. (i) (DFS) S A I D N G
(ii) (UCS) S A T I D W N O Y G
(iii) (Greedy) S T I N G
(iv) (A*Search) S T A I D O N Y G

Q10. (i) $4+0+1+1+2+2+1+3=14$ (ii) C ($h=13$ for this successor state and 15 for the others)
Q11. E (9) and G (3) would be pruned
Q12. (i) Prob (light) $\quad=0.04+0.16+0.02+0.63=0.85$
(ii) Prob(failure|rain $\vee \neg$ light $)=(0.04+0.03+0.07) /(0.04+0.03+0.07+0.16+0.02+0.03)=0.4$

Q13. Entropy(root) $\quad=-0.5\left(\log _{2}(0.5)\right)-0.5\left(\log _{2}(0.5)\right)=1$
Entropy $($ chocolate $)=$ Entropy $($ banana $)=0, \quad$ Entropy $($ vanilla $)=-\frac{1}{3} \log \frac{1}{3}-\frac{2}{3} \log \frac{2}{3} \simeq 0.9183$
Entropy(flavour) $\quad=\frac{3}{8}(0)+\frac{2}{8}(0)+\frac{3}{8}(0.9183) \simeq 0.344$
Entropy gain for flavour $\quad=1-0.344=0.656$ (any number between 0.651 and 0.661 is ok)
Entropy $($ smarties $)=0, \quad$ Entropy $($ peanuts $)=$ Entropy (raisons) $\simeq 0.9183$
Entropy (ingredient) $\quad=\frac{2}{8}(0)+\frac{3}{8}(0.9183)+\frac{3}{8}(0.9183) \simeq 0.689$
Entropy gain for ingredient $=1-0.689=0.311$ (any number between 0.306 and 0.316 is ok)
Q14. Error(Parent) $=1-\frac{9+1}{14+2}=\frac{6}{16}=\frac{3}{8}$
Error(Left) $=1-\frac{4+1}{7+2}=\frac{4}{9}$
Error(Right) $=1-\frac{6+1}{7+2}=\frac{2}{9}$
Backed up Error $\quad=\frac{7}{14}\left(\frac{4}{9}\right)+\frac{7}{14}\left(\frac{2}{9}\right)=\frac{3}{9}<\frac{3}{8}$
Therefore, the children should not be pruned.
Q15. There are many possible lines. The one giving maximal separation has slope $(2-1) /(2-0)=\frac{1}{2}$ and x_{2}-intercept $\frac{1}{2}$, which gives:

$$
x_{2}>0.5 x_{1}+0.5, \quad \text { i.e. }-0.5-0.5 x_{1}+x_{2}>0, \quad \text { so } w_{0}=-0.5, w_{1}=-0.5, w_{2}=1
$$

Q16. $w_{0} \rightarrow 0.5-1=-0.5, \quad w_{1} \rightarrow 1-3=-2, \quad w_{2} \rightarrow-2-(-2)=0$
Q17. $b_{0}=-2.5, b_{1}=0.5, b_{2}=1.5, b_{3}=0.5$ (any number within 0.5 of these values would be ok)
Q18.

K	L	M	$\mathrm{K} \wedge \neg \mathrm{M}$	$\mathrm{L} \rightarrow \mathrm{K} \wedge \neg \mathrm{M}$	$\neg \mathrm{M} \wedge \neg \mathrm{L}$	$\neg \mathrm{M} \wedge \neg \mathrm{L} \rightarrow \mathrm{K}$	KB
0	0	0	0	1	1	0	0
0	0	1	0	1	0	1	1
0	1	0	0	0	0	1	0
0	1	1	0	0	0	1	0
1	0	0	1	1	1	1	1
1	0	1	0	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	1	0

These are the models which satisfy both sentences: $\{\mathrm{M}\},\{\mathrm{K}\},\{\mathrm{K}, \mathrm{M}\},\{\mathrm{K}, \mathrm{L}\}$
Q19. D
Q20. (i) Not all swans are white.
(ii) Every clown rides a big, red bicycle.

Q21.
(i) $Q^{*}\left(S_{1}, a_{1}\right)=\quad 5 /(1-0.6)=12.5$
(ii) $Q^{*}\left(S_{1}, a_{2}\right)=-4+0.6 * 8 /(1-0.6)=8$
(iii) $Q^{*}\left(S_{2}, a_{1}\right)=9+0.6 * Q^{*}\left(S_{1}, a_{1}\right)=16.5$
(iv) $Q^{*}\left(S_{2}, a_{2}\right)=$
$8 /(1-0.6)=20$
(v) When $\gamma=0$, we maximize the immediate reward, so the optimal policy is: $\pi^{*}\left(S_{1}\right)=a_{1}, \pi^{*}\left(S_{2}\right)=a_{1}$. We already know the optimal policy when $\gamma=0.6$. The change from one optimal policy to the other occurs when:

$$
9+\frac{5 \gamma}{1-\gamma}=\frac{8}{1-\gamma}, \quad \text { i.e. } 9(1-\gamma)+5 \gamma=8, \quad \text { so } \gamma=0.25
$$

(vi) When $\gamma=1$, we maximize the average reward, so the optimal policy is: $\pi^{*}\left(S_{1}\right)=a_{2}, \pi^{*}\left(S_{2}\right)=a_{2}$. In this case, the change in optimal policy occurs when

$$
-4+\frac{8 \gamma}{1-\gamma}=\frac{5}{1-\gamma}, \quad \text { i.e. }-4(1-\gamma)+8 \gamma=5, \quad \text { so } \gamma=0.75
$$

