COMP3411/9814 Sample Exam Solutions

Q1. C Q2. D Q3. C Q4. B Q5. A Q6. D Q7. B Q8. ONE = 182, TEN = 728(you can try values for E one by one) Q9. (i) (DFS) SAIDNG (ii) (UCS) SATIDWNOYG STING (iii) (Greedy) STAIDONYG (iv) $(A^*Search)$ Q10. (i) 4+0+1+1+2+2+1+3 = 14 (ii) C (h = 13 for this successor state and 15 for the others) Q11. E (9) and G (3) would be pruned = 0.04 + 0.16 + 0.02 + 0.63 = 0.85Q12. (i) Prob(light) (ii) Prob(failure|rain $\lor \neg$ light) = (0.04+0.03+0.07)/(0.04+0.03+0.07+0.16+0.02+0.03) = 0.4 $= -0.5(\log_2(0.5)) - 0.5(\log_2(0.5)) = 1$ Q13. Entropy(root) $\begin{array}{ll} \text{Entropy(chocolate)} = \text{Entropy(banana)} = 0, & \text{Entropy(vanilla)} = -\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3} \simeq 0.9183 \\ \text{Entropy(flavour)} & = \frac{3}{8}(0) + \frac{2}{8}(0) + \frac{3}{8}(0.9183) \simeq 0.344 \\ \text{Entropy gain for flavour} & = 1 - 0.344 = 0.656 \text{ (any number between 0.651 and 0.661 is ok)} \end{array}$ Entropy(smarties) = 0, $Entropy(peanuts) = Entropy(raisons) \simeq 0.9183$ $=\frac{2}{8}(0)+\frac{3}{8}(0.9183)+\frac{3}{8}(0.9183)\simeq 0.689$ Entropy(ingredient) = 1 - 0.689 = 0.311 (any number between 0.306 and 0.316 is ok) Entropy gain for ingredient Q14. Error(Parent) = $1 - \frac{9+1}{14+2} = \frac{6}{16} = \frac{3}{8}$ Error(Left) = $1 - \frac{4+1}{7+2} = \frac{4}{9}$ Error(Right) = $1 - \frac{6+1}{7+2} = \frac{2}{9}$ Backed up Error = $\frac{7}{14}(\frac{4}{9}) + \frac{7}{14}(\frac{2}{9}) = \frac{3}{9} < \frac{3}{8}$ Therefore, the children should **not** be pruned.

Q15. There are many possible lines. The one giving maximal separation has slope $(2-1)/(2-0) = \frac{1}{2}$ and x_2 -intercept $\frac{1}{2}$, which gives:

$$x_2 > 0.5 x_1 + 0.5$$
, i.e. $-0.5 - 0.5 x_1 + x_2 > 0$, so $w_0 = -0.5$, $w_1 = -0.5$, $w_2 = 1$

Q16. $w_0 \to 0.5 - 1 = -0.5$, $w_1 \to 1 - 3 = -2$, $w_2 \to -2 - (-2) = 0$

Q17. $b_0 = -2.5$, $b_1 = 0.5$, $b_2 = 1.5$, $b_3 = 0.5$ (any number within 0.5 of these values would be ok) Q18.

Κ	L	Μ	$\mathbf{K} \wedge \neg \mathbf{M}$	$L \to K \wedge \neg M$	$\neg \ M \ \land \neg \ L$	$\neg \mathrel{\rm M} \land \neg \mathrel{\rm L} \to \mathrel{\rm K}$	KB
0	0	0	0	1	1	0	0
0	0	1	0	1	0	1	1
0	1	0	0	0	0	1	0
0	1	1	0	0	0	1	0
1	0	0	1	1	1	1	1
1	0	1	0	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	1	0

These are the models which satisfy both sentences: {M}, {K}, {K, M}, {K, L}

Q19. D

Q20. (i) Not all swans are white.

⁽ii) Every clown rides a big, red bicycle.

- Q21. (i) $Q^*(S_1, a_1) = 5 / (1 0.6) = 12.5$
 - (ii) $Q^*(S_1, a_2) = -4 + 0.6 * 8/(1 0.6) = 8$
 - (iii) $Q^*(S_2, a_1) = 9 + 0.6 * Q^*(S_1, a_1) = 16.5$
 - (iv) $Q^*(S_2, a_2) = \frac{8}{(1-0.6)} = 20$
 - (v) When $\gamma = 0$, we maximize the **immediate** reward, so the optimal policy is: $\pi^*(S_1) = a_1, \ \pi^*(S_2) = a_1$. We already know the optimal policy when $\gamma = 0.6$. The change from one optimal policy to the other occurs when:

$$9 + \frac{5\gamma}{1-\gamma} = \frac{8}{1-\gamma}$$
, i.e. $9(1-\gamma) + 5\gamma = 8$, so $\gamma = 0.25$

(vi) When $\gamma = 1$, we maximize the **average** reward, so the optimal policy is: $\pi^*(S_1) = a_2, \ \pi^*(S_2) = a_2$. In this case, the change in optimal policy occurs when

$$-4 + \frac{8\gamma}{1-\gamma} = \frac{5}{1-\gamma}$$
, i.e. $-4(1-\gamma) + 8\gamma = 5$, so $\gamma = 0.75$