
COMP3421
Vector geometry, Clipping With Solutions



Transformations

• Object in model co-ordinates

• Transform into world co-ordinates

• Represent points in object as 1D 

Matrices

• Multiply by matrices to transform them 



Coordinate frames

We can now think of a coordinate frame in 

terms of vectors.

A 2D frame is defined by:

• an origin: ϕ

• 2 axis vectors: i, j
i

j

ϕ



Points

A point in a coordinate frame can be 

described as a displacement from the 

origin:

i

j

ϕ

2j

2i 3i

P = 3i + 2j + ϕ



Transformation

To convert P to a different coordinate frame, 

we just need to know how to convert i, j

and ϕ. 

ij

ϕ

i'

j'

ϕ'



Transformation

To convert P to a different coordinate frame, 

we just need to know how to convert i, j

and ϕ. 

ij

ϕ

i'

j'

ϕ'

Q



Transformation

This transformation is much easier to 

represent as a matrix:

Q

1.4

3
2



Homogenous 

coordinates
We can use a single notation to describe 

both points and vectors.

Homogenous coordinates have an extra 

dimension representing the origin:

Includes Origin Does not include origin



Points and vectors

We can add two vectors to get a vector:

We can add a vector to a point to get a new 

point:

We cannot add two points.



Affine transformations
Transformations between coordinate 

frames can be represented as matrices:

Matrices in this form (note the 0s with the 1 

at the end of the bottom row) are called 

affine transformations . 



Affine transformations

Similarly for vectors:



Basic transformations

All affine transformations can be expressed 

as combinations of four basic types:

• Translation

• Rotation

• Scale

• Shear



Affine transformations
Affine transformations preserve straight 

lines:

They maintain parallel lines

They maintain relative distances on lines (ie 

midpoints are still midpoints etc)

They don’t always preserve angles or area

point vector



2D Translation

To translate the origin to a new point ϕ.

p2

ϕ p1



2D Translation

To translate the origin to a new point ϕ.

ϕ

q1

q2



2D Translation

Translate by (1,0.5) then plot point

P = (0.5,0.5) in local frame.

What is the point in world 

co-ordinates? We can see it would be 

(1.5,1)

ϕ

q1

q2



Example:Converting 

from Local to Global
Q(Global) = M P(local)

M             P       

1  0    1       0.5     =   1.5 

0  1  0.5      0.5            1            

0   0   1         1             1 

So Q is (1.5,1)



2D Translation

Note: translating a vector has no effect.

ϕ

v

v1

v2



2D Translation

Note: translating a vector has no effect.

ϕ

v

v1

v2



2D Rotation

To rotate a point about the origin:

p1p2



2D Rotation

To rotate a point about the origin:

q1

q2



2D Rotation

Likewise to rotate a vector:

u1
u2



2D Rotation

Likewise to rotate a vector:

v1

v2



2D Scale

To scale a point by factors (sx, sy) about 

the origin:

p1

p2



2D Scale

To scale a point by factors (sx, sy) about 

the origin:

q2

q1



2D Scale

Likewise to scale vectors:

u1

u2



2D Scale

Likewise to scale vectors:

v1

v2



Shear
Shear is the unwanted child of affine 

transformations.

It can occur when you scale axes non-

uniformly and then rotate. 

It does not preserve angles.

Usually it is not something you want.

It can be avoided by always scaling 

uniformly.



Horizontal:

Vertical:

Shear



2D Shear

Horizontal:

Vertical:



Shear in OpenGL

No shear command in opengl.

Can use gl.glMultMatrixf to set up any 

matrix.

Matrices are in column major order.



Exercise

What would the matrix for scaling -1 in the x 

and y direction look like? 

What would the matrix for rotating by 180 

degrees look like?



Composing 

transformations
We can combine a series of 

transformations by post-multiplying their 

matrices. The composition of two affine 

transformations is also affine.

Eg: Translate, then rotate, then scale:



In OpenGL
gl.glMatrixMode(GL2.GL_MODELVIEW);

//Current Transform (CT) is the MODELVIEW 

//Matrix

gl.glLoadIndentity();

//CT = identity matrix (I)

gl.glTranslated(dx, dy, 0);

//CT = IT

gl.glRotated(theta, 0, 0, 1);

//CT = ITR

gl.glScaled(sx, sy, 1);

//CT = ITRS



In OpenGL

gl.glBegin(GL2.GL_POINTS);

{

gl.glVertex2d(px, py);

//Point drawn at Q = CT P

//               Q = ITRS P

}

gl.glEnd();



Exercise

What would the value of the current 

transform be after the following?

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslated(1,2,0);

gl.glRotated(90,0,0,1);



Solution

CT = I 

I

[1 0 0]

[0 1 0]

[0 0 1] 



Solution

CT = T

I              T       = T

[1 0 0]  [1 0 1]       [1 0 1]

[0 1 0]  [0 1 2]       [0 1 2]

[0 0 1] [ 0 0 1]       [ 0 0 1]



Solution

CT = T R

T           R           =  TR

[ 1 0 1 ]  [ 0 -1  0 ]          [ 0 -1 1]

[ 0 1 2 ]  [ 1  0  0 ]          [  1  0 2]

[ 0 0 1 ]  [  0  0 1 ]          [ 0  0  1]



Exercise

Suppose we continue from our last 

example and do the following

gl.glPushMatrix();

gl.glScaled(2,2,1); 

//1. What is CT now? 

gl.glPopMatrix();

//2. What is CT now?



Solution

CT = TR S

TR *         S                 TRS

[ 0 -1 1]    [ 2 0 0]       [ 0 -2 1 ]

[  1  0 2]   [ 0 2  0]      [ 2  0  2 ]

[ 0  0 1]   [ 0 0 1]       [ 0  0  1]

*TR has been pushed onto stack



Solution

//1. What is CT now?

TRS

[ 0 -2  1 ]

[ 2  0  2 ]

[ 0  0  1 ]



Solution

//2. What is CT now?

It would be restored to the last matrix that 

got pushed on the stack

[ 0 -1  1 ]

[ 1  0  2 ] 

[ 0  0  1 ] 



Decomposing

transformations
Every 2D affine transformation can be 

decomposed as:

If scaling is always uniform in both axes, 

the shear term can be eliminated:



Decomposing

transformations
To decompose the transform, consider the 

matrix form:

axes origin



Decomposing

transformations
Assuming uniform scaling and no shear

Note: arctan(i1,i2) is arctan(i2/i1) aka tan-1(i2/i1) 

adjusting for i1 being 0. If i1 == 0 (and i2 is not) we 

get 90 degrees if y is positive or -90 if y is negative.



Example
[ 0 -2 1 ]     Origin: (1,2)

[ 2  0  2 ]     i: (0,2)

[ 0  0  1]     j: (-2,0)

Translation: (1,2)

Rotation: arctan(0,2) = 90 degrees

Scale = |i| = |j| = 2

Also we can tell that axes are still 

perpendicular as i.j = 0



Exercise
[1.414  -1.414   0.500 ] 

[1.414   1.414   -2.000]

[0.000   0.000   1.000 ]

What are the axes of the coordinate frame this 

matrix represents? What is the origin? Sketch it.

What is the scale of each axis?

What is the angle of each axis?

Are the axes perpendicular?



Solution
[1.414  -1.414   0.500 ] Origin: 0.5,-2

[1.414   1.414   -2.000]  i: 1.414,1.414

[0.000   0.000   1.000 ]  j: -1.414,1.414

Rotation: arctan(1.414,1.414) 

= 45 degrees

Scale: |i| = 2

Also we can tell that axes are still 

perpendicular as i.j = 0



Inverse 

Transformations
If the local-to-global transformation is:

then the global-to-local transformation is 

the inverse:



Inverse 

Transformations

Inverses are easy to compute:



Local to World 

Exercise
Suppose the following transformations 

had been applied:

gl.glTranslated(3,2,0);

gl.glRotated(-45,0,0,1);

gl.glScaled(0.5,0.5,1);

What point in the local co-ordinate frame 

would correspond to the world co-ordinate 

Q (2,-1)?



Solution

P(local) = M-1 Q(world)

= S-1R-1T-1 Q

S-1          R-1                    S-1R-1

[2 0 0]     [0.7, -0.7, 0]       [1.4,-1.4,0]

[0 2 0]     [0.7, 0.7, 0]        [1.4,1.4,0]

[0 0 1]     [ 0,    0  ,   1]      [0, 0 , 1]



Solution

P(local) = M-1 Q(world)

= S-1R-1T-1 Q

S-1R-1             T-1                 S-1R-1T-1

[1.4,-1.4,0]         [1, 0, -3]        [1.4,-1.4,-1.4]

[1.4,1.4,0]          [0, 1, -2]        [1.4,1.4,-7]

[0, 0 , 1]             [0, 0, 1]         [0,0,1]



Solution

P(local) = M-1 Q(world)

= S-1R-1T-1 Q

S-1R-1T-1           Q        P(local)

[1.4,-1.4,-1.4]    [2]          [2.8]

[1.4,1.4,-7]        [-1]         [-5.6]

[0,0,1]                [1]          [1]



Assignment  

ROOT

/           \

Table         Lego Man

/                      \

Cup                Lego Man Hand



Assignment Change 

Parent
ROOT

/           \

Table         Lego Man

\

Lego Man Hand  

\

Cup



Lerping

We can add affine combinations of points:

We often use this to do linear interpolation

between points:

lerp(P,Q,t) = P(1-t) + tQ

P

Q

lerp(P, Q, 0.3)



Lerping Exercise

Using linear interpolation, what is the 

midpoint between P(4,9) and B=(3,7).



Lerping Solution

Using linear interpolation, what is the 

midpoint between P(4,9) and B=(3,7).

Would be at t = 0.5 so

lerp(P,B,t) = (4,9)(1 – 0.5) + (0.5)(3,7)

= (2,4.5) + (1.5,3.5)

= (3.5,8)



Lines

Parametric form:

L(t) = P + tv

v = Q - P

Point-normal form in 2D:

P

Q

t < 0

0 < t < 1

t >1

P

n

L(t)

L



Planes in 3D

Parametric form:

Point-normal form:
n

P C



Line intersection

Two lines

Solve simultaneous equations:



Line Intersection 

Example
A = (0,3) B = (12,7)

C = (2,0) D = (7,20)

LAB(t) = (0,3) + (12-0,7-3)t  = (0,3) + (12,4)t

LCD(u) = (2,0) + (7-2,20-0)u = (2,0) + (5,20)u

Intersect for values of t and u where

LAB(t) = LCD(u)



Line Intersection 

Example…
(0,3) + (12,4)t = (2,0) + (5,20)u

In 2D that is 2 equations, one for x and y

0 + 12t = 2 + 5u

3 + 4t = 0 + 20u

Solve for t and u: t = 0.25, u = 0.2

Substitute into either line equation to get 

intersection at (3,4)



Line Intersection 

Example 2
Find where the L(t) = A + ct intersects with 

the line n.(P-B) = 0 where

A(2,3), c = (4,-4), n = (6,8), B=(7,7)

(6,8).((A + ct) – (7,7)) = 0

(6,8).((2,3) + (4,-4) t – (7,7)) = 0

(6,8).( 2+4t-7, 3-4t-7) = 0

(6,8).(-5+4t, -4-4t) = 0



Line Intersection …

(6,8).(-5+4t,-4-4t) = 0

6(-5+4t) + 8(-4-4t) = 0

-30 + 24t -32 – 32t = 0

t = 62/-8 = -7.75

P = A + ct = (2, 3) + (4, -4)*(-7.75) 

= (-29, 34)



Point in Polygon

For any ray from the point

Count the number of crossings with the 

polygon

If there is an odd number of crossings the 

point is inside



Point in polygon



Point in polygon

1

6

2

3

2

3



Difficult points



Solution

Only count crossings at the lower vertex of 

an edge. don't count

1

0

2 1

count



Point in polygon

2
0

1

10

1

1

2

3

0

2
2

0



Computational 

Geometry
Computational Geometry in C, O'Rourke

http://cs.smith.edu/~orourke/books/compge

om.html

CGAL 

Computational Geometry Algorithms Library

http://cgal.org/

http://cs.smith.edu/~orourke/books/compgeom.html
http://cgal.org/


The graphics pipeline

Projection 

transformation
Illumination

Clipping
Perspective 

division
ViewportRasterisation

Texturing
Frame 

buffer
Display

Hidden 

surface 

removal

Model-View Transform

Model 

Transform

View 

Transform

Model

User



Clipping

The world is often much bigger than the 

camera window.  We only want to render 

the parts we can see.

Window



Clipping

The world is often much bigger than the 

camera window.  We only want to render 

the parts we can see.

Window



Clipping algorithms

There are a number of different clipping 

algorithms:

• Cohen-Sutherland (line vs rect)

• Cyrus-Beck (line vs convex poly)

• Sutherland-Hodgman 

(poly vs convex poly)

• Weiler-Atherton (poly vs poly)



Clipping lines to an axis-aligned rectangle.

Cohen-Sutherland



Trivial accept/reject

accept: both 

ends inside

reject: both ends 

on same side (top)more

testing



Labelling

00001000 0010

01001100 0110

00011001 0011



Label ends

Outcode(x, y):

code = 0;

if (x < left)   code |= 8;

if (y > top)    code |= 4;

if (x > right)  code |= 2;

if (y < bottom) code |= 1;

return code;



Clip Once

ClipOnce(px, py, qx, qy):

p = Outcode(px, py);

q = Outcode(qx, qy);

if (p == 0 && q == 0) {

// trivial accept

}

if (p & q != 0) {

// trivial reject

}



Clip Once

// cont...

if (p != 0) {

// p is outside, clip it 

} 

else {

// q is outside, clip it   

}



Clip Loop

Clip(px, py, qx, qy):

accept = false;

reject = false; 

while (!accept && !reject):

ClipOnce(px, py, qx, qy)



Clipping a point

A

P

Q

Using similar triangles:



Clipping a point

A

P(-1.5,-2)

Q(0,0)

Assume bottom left of clipping 

rectangle is (-1,-1)



Clipping a point

A

P(-1.5,-2)

Q(0,0)

Assume bottom left of clipping 

rectangle is (-1,-1)

ax = -1

ay = -2+

(0.5)(2/1.5)



Clipping a point

A(-1,-1.333)

P(-1.5,-2)

Q(0,0)

Assume bottom left of clipping 

rectangle is (-1,-1)

ax = -1

ay = -2+

(0.5)(2/1.5)



Case needing 4 Clips

P1
P

Q

P2

Q1

Q2



Cyrus Beck

Clipping a line to a convex polygon.



Ray colliding with 

segment
Parametric ray:

Point normal segment:

Collide when:

A

B

c
n

R(t)



Hit time / point



Entering / exiting

Assuming all normals point out of the 

polygon:

c

n

c

n

entering exiting



Cyrus-Beck

Initialise tin to 0 and tout to 1

Compare the ray to each edge of the 

(convex) polygon.

Compute thit for each edge.

Keep track of maximum tin

Keep track of minimum tout.



Example

tin tout

0 1

P0

P1

P2

P3P4



Example

tin tout

0 1

P0

P1

P2

P3P4



Example

tin tout

0 1

0.1 1
P0

P1

P2

P3P4



Example

tin tout

0 1

0.1 1
P0

P1

P2

P3P4



Example

tin tout

0 1

0.1 1

0.1 0.9
P0

P1

P2

P3P4



Example

tin tout

0 1

0.1 1

0.1 0.9
P0

P1

P2

P3P4



Example

tin tout
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P3P4



Example

tin tout
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Example

tin tout
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Example

tin tout

0 1

0.1 1
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Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

0.1 0.85

0.2 0.85

P0

P1

P2

P3P4



Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

0.1 0.85

0.2 0.85

P0

P1

P2

P3P4


