
COMP3421
Vector geometry, Clipping With Solutions

Transformations

• Object in model co-ordinates

• Transform into world co-ordinates

• Represent points in object as 1D

Matrices

• Multiply by matrices to transform them

Coordinate frames

We can now think of a coordinate frame in

terms of vectors.

A 2D frame is defined by:

• an origin: ϕ

• 2 axis vectors: i, j
i

j

ϕ

Points

A point in a coordinate frame can be

described as a displacement from the

origin:

i

j

ϕ

2j

2i 3i

P = 3i + 2j + ϕ

Transformation

To convert P to a different coordinate frame,

we just need to know how to convert i, j

and ϕ.

ij

ϕ

i'

j'

ϕ'

Transformation

To convert P to a different coordinate frame,

we just need to know how to convert i, j

and ϕ.

ij

ϕ

i'

j'

ϕ'

Q

Transformation

This transformation is much easier to

represent as a matrix:

Q

1.4

3
2

Homogenous

coordinates
We can use a single notation to describe

both points and vectors.

Homogenous coordinates have an extra

dimension representing the origin:

Includes Origin Does not include origin

Points and vectors

We can add two vectors to get a vector:

We can add a vector to a point to get a new

point:

We cannot add two points.

Affine transformations
Transformations between coordinate

frames can be represented as matrices:

Matrices in this form (note the 0s with the 1

at the end of the bottom row) are called

affine transformations .

Affine transformations

Similarly for vectors:

Basic transformations

All affine transformations can be expressed

as combinations of four basic types:

• Translation

• Rotation

• Scale

• Shear

Affine transformations
Affine transformations preserve straight

lines:

They maintain parallel lines

They maintain relative distances on lines (ie

midpoints are still midpoints etc)

They don’t always preserve angles or area

point vector

2D Translation

To translate the origin to a new point ϕ.

p2

ϕ p1

2D Translation

To translate the origin to a new point ϕ.

ϕ

q1

q2

2D Translation

Translate by (1,0.5) then plot point

P = (0.5,0.5) in local frame.

What is the point in world

co-ordinates? We can see it would be

(1.5,1)

ϕ

q1

q2

Example:Converting

from Local to Global
Q(Global) = M P(local)

M P

1 0 1 0.5 = 1.5

0 1 0.5 0.5 1

0 0 1 1 1

So Q is (1.5,1)

2D Translation

Note: translating a vector has no effect.

ϕ

v

v1

v2

2D Translation

Note: translating a vector has no effect.

ϕ

v

v1

v2

2D Rotation

To rotate a point about the origin:

p1p2

2D Rotation

To rotate a point about the origin:

q1

q2

2D Rotation

Likewise to rotate a vector:

u1
u2

2D Rotation

Likewise to rotate a vector:

v1

v2

2D Scale

To scale a point by factors (sx, sy) about

the origin:

p1

p2

2D Scale

To scale a point by factors (sx, sy) about

the origin:

q2

q1

2D Scale

Likewise to scale vectors:

u1

u2

2D Scale

Likewise to scale vectors:

v1

v2

Shear
Shear is the unwanted child of affine

transformations.

It can occur when you scale axes non-

uniformly and then rotate.

It does not preserve angles.

Usually it is not something you want.

It can be avoided by always scaling

uniformly.

Horizontal:

Vertical:

Shear

2D Shear

Horizontal:

Vertical:

Shear in OpenGL

No shear command in opengl.

Can use gl.glMultMatrixf to set up any

matrix.

Matrices are in column major order.

Exercise

What would the matrix for scaling -1 in the x

and y direction look like?

What would the matrix for rotating by 180

degrees look like?

Composing

transformations
We can combine a series of

transformations by post-multiplying their

matrices. The composition of two affine

transformations is also affine.

Eg: Translate, then rotate, then scale:

In OpenGL
gl.glMatrixMode(GL2.GL_MODELVIEW);

//Current Transform (CT) is the MODELVIEW

//Matrix

gl.glLoadIndentity();

//CT = identity matrix (I)

gl.glTranslated(dx, dy, 0);

//CT = IT

gl.glRotated(theta, 0, 0, 1);

//CT = ITR

gl.glScaled(sx, sy, 1);

//CT = ITRS

In OpenGL

gl.glBegin(GL2.GL_POINTS);

{

gl.glVertex2d(px, py);

//Point drawn at Q = CT P

// Q = ITRS P

}

gl.glEnd();

Exercise

What would the value of the current

transform be after the following?

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslated(1,2,0);

gl.glRotated(90,0,0,1);

Solution

CT = I

I

[1 0 0]

[0 1 0]

[0 0 1]

Solution

CT = T

I T = T

[1 0 0] [1 0 1] [1 0 1]

[0 1 0] [0 1 2] [0 1 2]

[0 0 1] [0 0 1] [0 0 1]

Solution

CT = T R

T R = TR

[1 0 1] [0 -1 0] [0 -1 1]

[0 1 2] [1 0 0] [1 0 2]

[0 0 1] [0 0 1] [0 0 1]

Exercise

Suppose we continue from our last

example and do the following

gl.glPushMatrix();

gl.glScaled(2,2,1);

//1. What is CT now?

gl.glPopMatrix();

//2. What is CT now?

Solution

CT = TR S

TR * S TRS

[0 -1 1] [2 0 0] [0 -2 1]

[1 0 2] [0 2 0] [2 0 2]

[0 0 1] [0 0 1] [0 0 1]

*TR has been pushed onto stack

Solution

//1. What is CT now?

TRS

[0 -2 1]

[2 0 2]

[0 0 1]

Solution

//2. What is CT now?

It would be restored to the last matrix that

got pushed on the stack

[0 -1 1]

[1 0 2]

[0 0 1]

Decomposing

transformations
Every 2D affine transformation can be

decomposed as:

If scaling is always uniform in both axes,

the shear term can be eliminated:

Decomposing

transformations
To decompose the transform, consider the

matrix form:

axes origin

Decomposing

transformations
Assuming uniform scaling and no shear

Note: arctan(i1,i2) is arctan(i2/i1) aka tan-1(i2/i1)

adjusting for i1 being 0. If i1 == 0 (and i2 is not) we

get 90 degrees if y is positive or -90 if y is negative.

Example
[0 -2 1] Origin: (1,2)

[2 0 2] i: (0,2)

[0 0 1] j: (-2,0)

Translation: (1,2)

Rotation: arctan(0,2) = 90 degrees

Scale = |i| = |j| = 2

Also we can tell that axes are still

perpendicular as i.j = 0

Exercise
[1.414 -1.414 0.500]

[1.414 1.414 -2.000]

[0.000 0.000 1.000]

What are the axes of the coordinate frame this

matrix represents? What is the origin? Sketch it.

What is the scale of each axis?

What is the angle of each axis?

Are the axes perpendicular?

Solution
[1.414 -1.414 0.500] Origin: 0.5,-2

[1.414 1.414 -2.000] i: 1.414,1.414

[0.000 0.000 1.000] j: -1.414,1.414

Rotation: arctan(1.414,1.414)

= 45 degrees

Scale: |i| = 2

Also we can tell that axes are still

perpendicular as i.j = 0

Inverse

Transformations
If the local-to-global transformation is:

then the global-to-local transformation is

the inverse:

Inverse

Transformations

Inverses are easy to compute:

Local to World

Exercise
Suppose the following transformations

had been applied:

gl.glTranslated(3,2,0);

gl.glRotated(-45,0,0,1);

gl.glScaled(0.5,0.5,1);

What point in the local co-ordinate frame

would correspond to the world co-ordinate

Q (2,-1)?

Solution

P(local) = M-1 Q(world)

= S-1R-1T-1 Q

S-1 R-1 S-1R-1

[2 0 0] [0.7, -0.7, 0] [1.4,-1.4,0]

[0 2 0] [0.7, 0.7, 0] [1.4,1.4,0]

[0 0 1] [0, 0 , 1] [0, 0 , 1]

Solution

P(local) = M-1 Q(world)

= S-1R-1T-1 Q

S-1R-1 T-1 S-1R-1T-1

[1.4,-1.4,0] [1, 0, -3] [1.4,-1.4,-1.4]

[1.4,1.4,0] [0, 1, -2] [1.4,1.4,-7]

[0, 0 , 1] [0, 0, 1] [0,0,1]

Solution

P(local) = M-1 Q(world)

= S-1R-1T-1 Q

S-1R-1T-1 Q P(local)

[1.4,-1.4,-1.4] [2] [2.8]

[1.4,1.4,-7] [-1] [-5.6]

[0,0,1] [1] [1]

Assignment

ROOT

/ \

Table Lego Man

/ \

Cup Lego Man Hand

Assignment Change

Parent
ROOT

/ \

Table Lego Man

\

Lego Man Hand

\

Cup

Lerping

We can add affine combinations of points:

We often use this to do linear interpolation

between points:

lerp(P,Q,t) = P(1-t) + tQ

P

Q

lerp(P, Q, 0.3)

Lerping Exercise

Using linear interpolation, what is the

midpoint between P(4,9) and B=(3,7).

Lerping Solution

Using linear interpolation, what is the

midpoint between P(4,9) and B=(3,7).

Would be at t = 0.5 so

lerp(P,B,t) = (4,9)(1 – 0.5) + (0.5)(3,7)

= (2,4.5) + (1.5,3.5)

= (3.5,8)

Lines

Parametric form:

L(t) = P + tv

v = Q - P

Point-normal form in 2D:

P

Q

t < 0

0 < t < 1

t >1

P

n

L(t)

L

Planes in 3D

Parametric form:

Point-normal form:
n

P C

Line intersection

Two lines

Solve simultaneous equations:

Line Intersection

Example
A = (0,3) B = (12,7)

C = (2,0) D = (7,20)

LAB(t) = (0,3) + (12-0,7-3)t = (0,3) + (12,4)t

LCD(u) = (2,0) + (7-2,20-0)u = (2,0) + (5,20)u

Intersect for values of t and u where

LAB(t) = LCD(u)

Line Intersection

Example…
(0,3) + (12,4)t = (2,0) + (5,20)u

In 2D that is 2 equations, one for x and y

0 + 12t = 2 + 5u

3 + 4t = 0 + 20u

Solve for t and u: t = 0.25, u = 0.2

Substitute into either line equation to get

intersection at (3,4)

Line Intersection

Example 2
Find where the L(t) = A + ct intersects with

the line n.(P-B) = 0 where

A(2,3), c = (4,-4), n = (6,8), B=(7,7)

(6,8).((A + ct) – (7,7)) = 0

(6,8).((2,3) + (4,-4) t – (7,7)) = 0

(6,8).(2+4t-7, 3-4t-7) = 0

(6,8).(-5+4t, -4-4t) = 0

Line Intersection …

(6,8).(-5+4t,-4-4t) = 0

6(-5+4t) + 8(-4-4t) = 0

-30 + 24t -32 – 32t = 0

t = 62/-8 = -7.75

P = A + ct = (2, 3) + (4, -4)*(-7.75)

= (-29, 34)

Point in Polygon

For any ray from the point

Count the number of crossings with the

polygon

If there is an odd number of crossings the

point is inside

Point in polygon

Point in polygon

1

6

2

3

2

3

Difficult points

Solution

Only count crossings at the lower vertex of

an edge. don't count

1

0

2 1

count

Point in polygon

2
0

1

10

1

1

2

3

0

2
2

0

Computational

Geometry
Computational Geometry in C, O'Rourke

http://cs.smith.edu/~orourke/books/compge

om.html

CGAL

Computational Geometry Algorithms Library

http://cgal.org/

http://cs.smith.edu/~orourke/books/compgeom.html
http://cgal.org/

The graphics pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Clipping

The world is often much bigger than the

camera window. We only want to render

the parts we can see.

Window

Clipping

The world is often much bigger than the

camera window. We only want to render

the parts we can see.

Window

Clipping algorithms

There are a number of different clipping

algorithms:

• Cohen-Sutherland (line vs rect)

• Cyrus-Beck (line vs convex poly)

• Sutherland-Hodgman

(poly vs convex poly)

• Weiler-Atherton (poly vs poly)

Clipping lines to an axis-aligned rectangle.

Cohen-Sutherland

Trivial accept/reject

accept: both

ends inside

reject: both ends

on same side (top)more

testing

Labelling

00001000 0010

01001100 0110

00011001 0011

Label ends

Outcode(x, y):

code = 0;

if (x < left) code |= 8;

if (y > top) code |= 4;

if (x > right) code |= 2;

if (y < bottom) code |= 1;

return code;

Clip Once

ClipOnce(px, py, qx, qy):

p = Outcode(px, py);

q = Outcode(qx, qy);

if (p == 0 && q == 0) {

// trivial accept

}

if (p & q != 0) {

// trivial reject

}

Clip Once

// cont...

if (p != 0) {

// p is outside, clip it

}

else {

// q is outside, clip it

}

Clip Loop

Clip(px, py, qx, qy):

accept = false;

reject = false;

while (!accept && !reject):

ClipOnce(px, py, qx, qy)

Clipping a point

A

P

Q

Using similar triangles:

Clipping a point

A

P(-1.5,-2)

Q(0,0)

Assume bottom left of clipping

rectangle is (-1,-1)

Clipping a point

A

P(-1.5,-2)

Q(0,0)

Assume bottom left of clipping

rectangle is (-1,-1)

ax = -1

ay = -2+

(0.5)(2/1.5)

Clipping a point

A(-1,-1.333)

P(-1.5,-2)

Q(0,0)

Assume bottom left of clipping

rectangle is (-1,-1)

ax = -1

ay = -2+

(0.5)(2/1.5)

Case needing 4 Clips

P1
P

Q

P2

Q1

Q2

Cyrus Beck

Clipping a line to a convex polygon.

Ray colliding with

segment
Parametric ray:

Point normal segment:

Collide when:

A

B

c
n

R(t)

Hit time / point

Entering / exiting

Assuming all normals point out of the

polygon:

c

n

c

n

entering exiting

Cyrus-Beck

Initialise tin to 0 and tout to 1

Compare the ray to each edge of the

(convex) polygon.

Compute thit for each edge.

Keep track of maximum tin

Keep track of minimum tout.

Example

tin tout

0 1

P0

P1

P2

P3P4

Example

tin tout

0 1

P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1
P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1
P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9
P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9
P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

0.1 0.85

P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

0.1 0.85

P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

0.1 0.85

0.2 0.85

P0

P1

P2

P3P4

Example

tin tout

0 1

0.1 1

0.1 0.9

0.1 0.85

0.1 0.85

0.2 0.85

P0

P1

P2

P3P4

